
Bulletin of Mathematical Biology (2006)
DOI 10.1007/s11538-005-9015-2

ORIGINAL ARTICLE

Fluid Mechanics of the Human Eye: Aqueous Humour
Flow in the Anterior Chamber

A. D. Fitt∗, G. Gonzalez

School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK

Received: 7 July 2004 / Accepted: 27 January 2005
C© Society for Mathematical Biology 2006

Abstract We consider and compare the various different kinds of flow that may
take place in the anterior chamber of a human eye. The physical mechanisms re-
sponsible for causing such flows may be classified as follows: (i) buoyancy-driven
flow arising from the temperature difference between the anterior surface of the
cornea and the iris, (ii) flow generated by the aqueous production of the ciliary
body, (iii) flow generated by the interaction between buoyancy and gravity while
sleeping while sleeping in a face-up position, (iv) flow generated by phakodenesis
(lens tremor), (v) flow generated by Rapid Eye Movement (REM) during sleep.
Each flow is studied using a traditional fluid mechanics/asymptotic analysis ap-
proach. We also assess the veracity of a hypothesis that was recently advanced
[see Maurice, D.M., 1998. The Von Sallman Lecture 1996: An ophthalmological
explanation of REM sleep. Exp. Eye. Res. 66, 139–145, for details] to suggest that,
contrary to previous opinion, the purpose of REM during sleep is to ensure corneal
respiration in the absence of the buoyant mixing that routinely takes place due to
(i) above during waking conditions.

Keywords Aqueous humour circulation · Anterior chamber flow ·
Fluid mechanics · Convective flow · REM sleep · Phakodenesis

1. Introduction

It has long been known that a number of distinct mechanisms can act to cause the
motion of aqueous humour in the anterior chamber of a human eye. Normally pa-
tients are unaware that any such flow occurs, for the transparency of the aqueous
gives no hint of the flow that is occurring. Flow in the anterior chamber becomes
much more important (a) when particulate matter (red/white blood cells or pig-
ment particles) is present (see Section 2 below) and (b) when it is desired to use
the flow for a clinical purpose (for example, the distribution of drugs within the
anterior chamber, Wyatt, 1996).
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Table 1 Standard parameter values for an adult human eye

Physical quantity Typical value

Radius of anterior chambera a (m) 5.5 × 10−3

Total width of anterior chambera l (m) 11 × 10−3

Coefficient of linear expansion of aqueous humourb α (/K) 3.0 × 10−4

Gravitational acceleration g (m/s2) 9.8 × 100

Height of anterior chambera h0 (m) 2.75 × 10−3

Dynamic viscosity µ of aqueous humourb,c (Pa s) 1.0 × 10−3

Density ρ0 of aqueous humourc (kg/m3) 1.0 × 103

aBron et al. (1997).
bBatchelor (1985).
c Fatt and Weissman, (1992).

The various mechanisms that cause flow of aqueous inside the anterior cham-
ber, namely temperature differences, secretory flow from the ciliary body through
the pupil aperture and ultimately to the trabecular meshwork, gravity, and move-
ment of the eye itself will be considered in turn, using classical fluid mechanics and
asymptotic analysis. In each case the importance of the flow thus produced will be
assessed. Throughout, we shall use typical parameter values for a normal adult hu-
man eye. These are summarised in Table 1, where aqueous humour is considered
to have properties very similar to water (Fatt and Weissman, 1992). (In reality the
primary source of aqueous humour is the ultrafiltration of blood plasma.) We shall
also assume for simplicity that the corneal shape is given by a simple known func-
tion relating its height to position: using more accurate measured profiles would
cause no difficulties other than a complication (and consequent obfuscation) of
the algebra involved.

2. Buoyant flow driven by temperature differences

It has long been acknowledged that aqueous humour in the anterior chamber can
circulate under the action of buoyancy-driven currents. The driving mechanism for
these currents is the temperature difference between the anterior surface of the
cornea (which, under normal waking conditions is exposed to ambient conditions)
and the iris (which is maintained essentially at body temperature). The existence
of buoyancy-driven anterior chamber flow was demonstrated experimentally
in Wyatt (1996) where changes in aqueous circulation were promoted by the
application of hot or cold packs to the closed lids of a human eye.

The fluid mechanics underlying this phenomenon was investigated theoretically
in Canning et al. (2002), where it was shown that the “lubrication theory” limit
of the Navier–Stokes equations was appropriate. Using the Boussinesq approxi-
mation for the buoyancy, it was shown that, to leading order, the flow satisfies the
partial differential equations

− px

ρ0
+ νuzz + g(1 − α(T − T0)) = 0 (1)
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− py

ρ0
+ νvzz = 0 (2)

pz = 0 (3)

ux + vy + wz = 0 (4)

Tzz = 0 (5)

subject to the boundary conditions

u = v = 0, w = w0(x, y), T = T1 on z = 0, (6)

u = v = w = 0, T = T0 on z = h(x, y). (7)

In (1)–(7) the fluid velocity is denoted by q = (u, v, w)T and the coordinate system
(x, y, z) is as shown in Fig. 1. The temperature and pressure of the aqueous are de-
noted by T and p respectively, the posterior surface of the cornea is assumed to be
at z = h(x, y), and w = w0(x, y) specifies the flow (if any) through the pupil aper-
ture. T0 and T1 denote the temperatures of the posterior surface of the cornea and
the anterior surface of the iris respectively, and ν, ρ0 and α denote respectively the
kinematic viscosity, fluid density when T = T0 and coefficient of linear expansion
of the aqueous.

Under the simplest assumptions (namely no flow through the pupil aperture so
that w0 = 0, gravity acting along the positive x-axis and hydrostatic pressure) we
find that v = 0, so that flow takes place in two-dimensional vertical (x, z)-slices of
the anterior chamber. The solution in this case is given by

p = pa + gρ0(x + a)(2 − α(T1 − T0))/2 (8)

T = T1 + z
h

(T0 − T1) (9)

ψ = − (T1 − T0)gαz2(z − h)2

24νh
(10)
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Fig. 1 Schematic diagram and nomenclature of anterior chamber of a human eye.
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Fig. 2 Streamlines for buoyancy-driven flow in anterior chamber in the slice y = 0: Parameter
values as in Table 1 with T1 − T0 = 2◦C and h(x, y) = h0

√
1 − r2/a2.

where pa is the ambient pressure and the stream function ψ(x, z) is defined by
u = ψz, w = −ψx . Streamlines of this flow in the plane y = 0 for the values given
in Table 1 with h(x, y) = h0(1 − r2/a2)1/2 are shown in Fig. 2. (Note that here and
henceforth the vertical axis is stretched to allow the flow details to be more easily
visible.)

Using typical parameter values as given in Table 1, we find that a typical maxi-
mum flow speed in the anterior chamber is given by

umax ∼ (T1 − T0) × 1.98 × 10−4 m s−1 K−1.

From this we conclude that, even for relatively small temperature differences,
aqueous humour circulation speeds of order 0.1 mm/s may be expected. The analy-
sis contained in subsequent sections will confirm that buoyant flow of this sort pro-
vides by far the most powerful force to drive flow in the anterior chamber, produc-
ing flow speeds that are an order of magnitude greater than any other mechanism.

Many other interesting conclusions may be drawn from the details of such flow.
For example, the shear stress may be calculated to determine whether or not the
flow is strong enough to detach pigment particles from the iris. Comparison with
the experimental values of Gerlach et al. (1997) and Vankooten et al. (1994) soon
show that the flow is not nearly powerful enough to cause such effects, so that
buoyancy-driven flow in the anterior chamber cannot be solely responsible (as has
previously been suggested) for the presence of pigment particles in the anterior
chamber. It is also possible to propose various other models, more sophisticated
than that used here, for the heat transfer across the cornea, but such developments



Bulletin of Mathematical Biology (2006)

make only minor differences to both the quantitative and qualitative details of the
flow.

Once the flow is known, it is a simple matter to include particles in the analysis.
This is done in detail in Canning et al. (2002). In this manner predictions may be
made of hyphemas (patterns formed by red blood cells in the anterior chamber)
hypopyons (formed by white blood cells) and Krukenberg spindles (composed of
pigment particles). The theory may also be used to predict how a hyphema may be
disrupted by the application of a cold patch to the eye.

3. Aqueous flow through the pupil aperture

When a patient has been asleep for a period of more than a few minutes, it seems
reasonable to assume that the generous supply of blood vessels in the eyelid may
render the temperature in the anterior chamber close to uniform and therefore
greatly reduce the strength of flow predicted by (8)–(10). In the absence of a
dominant buoyancy-driven flow the only remaining mechanism for causing flow
in a stationary eye is the passage of fresh aqueous through the pupil aperture.
The resulting flow may easily be predicted using the thin-layer theory outlined
in Canning et al. (2002). Assuming cylindrical symmetry so that the flow depends
only on z and the radial direction r , the equations of motion are

Pr = µuzz, Pz = 0,
1
r

(ru)r + wz = 0.

Here the hydrostatic pressure has been subtracted so that p = −ρ0gz + P(r) and
the fluid velocity is now q = uêr + wêz where êr and êz are unit vectors in the r
and z directions respectively.

The boundary conditions for the flow are that both u and w are zero on the
corneal surface z = h(r), u is zero on z = 0, and that w = w0(r) on z = 0. Solving,
we find that

u = zPr

2µ
(z − h(r)), w = z2

12µr
[(3h − 2z)(r Pr )r + 3rhr Pr ] + w0(r)

where P(r) satisfies

(rh3 Pr )r = −12µrw0.

Many possible examples may now be examined; one of the simplest consists of
taking

h = h0(1 − r2/a2)1/2, w0 = Ai (r2 − a2)(r2 − a2/3) (11)

whence

P = 2Aiµa3

3h3
0

(a2 − r2)3/2. (12)
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Here Ai is a constant that characterises the strength of the flow. This choice for
w0 assumes that the pupil aperture has radius1 a/

√
3 through which the flow has a

parabolic velocity profile, and that outflow takes place over the rest of the iris (in
reality of course outflow takes place only very near the angle).

The simplicity of (11) will be exploited in Section 3.1, but for the present we will
use the more realistic choice

w0 = K1(b2 − r2)H(b − r) − K2 H(r − (a − δ)) (13)

where H is a Heaviside function, b = ka is the radius of the pupil aperture (k < 1)
and K1, K2 and δ are constants. Now flow with a parabolic velocity profile enters
through the pupil aperture 0 ≤ r ≤ b and the flow exits as a plug flow over the
region a − δ ≤ r ≤ a at the limbus (the visible junction between the transparent
cornea and the white-coloured sclera). Choosing

K2 = a4k4 K1

2δ(2a − δ)

ensures that mass is conserved in the anterior chamber, and we find further that
the mass flow into the anterior chamber is K1b4/4 and

ψ = (2z + h)(z − h)2

4h3
[K1r2(r2 − 2b2) − K1(r2 − b2)2 H(r − b)

+ 2K2(r2 − (a − δ)2)H(r − a + δ)] (14)

and

Pr = 12µψ

r(2z + h)(z − h)2
.

As far as the constant K1 is concerned, typical values for the mass flow through
the pupil aperture are given in (Brubaker, 1996), who suggests that the flow
of aqueous is diurnal, having a value of 1.23 ± 0.41 µl/min between the hours
of midnight and 06.00. A value of 1.23 µl/min thus corresponds to taking K1 =
8.603 × 1010 µl/min. Using the standard values given in Table 1 with k = 1/2, we
find that the streamlines are as shown in Fig. 3. The maximum speed of the flow
is 7.5 × 10−6m/s, which compares well with the order of magnitude estimate in
Maurice (1998) of 0.1 mm/min ∼ 1.7 × 10−6 m/s.

3.1. Combined buoyant and secretory flow

Finally, it is worth noting that it is also possible to examine a case where the buoy-
ant convection is small enough just to balance the secretory flow through the pupil

1Pupil aperture radius normally varies between about 1 and 3 mm, the latter figure being achieved
by young patients in essentially dark surroundings.
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Fig. 3 Streamlines of secretory flow described by (14) for standard values from Table 1 with
k = 1/2, δ = a/10 and K1 = 8.603 × 1010 µl/min. Corneal shape given by h(r) = h0(1 − r2/a2), w0
as given by (13).

aperture. When the patient adopts a vertical position so that gravity acts in the
direction of the x-axis, the flow streamlines become fully three-dimensional and
very complicated (for more details see Canning et al. , 2002).

4. Buoyancy-driven flow during sleep

When a patient sleeps in a face-up position gravity acts vertically downwards
from the cornea to the iris. Maurice (1998) notes that it may be possible that the
supply of blood in the eyelids is not sufficient to warm the corneal surface to body
temperature during sleep, so that a small temperature difference between the
posterior surface of the cornea and the iris and thus a residual thermal circulation
might persist. This will drive drive a buoyant flow different in character from that
described in Section 2. Ignoring secretory flow from the ciliary body, we again
assume axisymmetric flow with fluid velocity q = uêr + wêz. Under the standard
lubrication theory approximation and using the same notation as in the sections
above, the equations to be solved are now

pr = µuzz,
pz

ρ0
= −g(1 − α(T − T0)), Tzz = 0,

1
r

(ru)r + wz = 0

with boundary conditions u(r, 0) = u(r, h(r)) = w(r, 0) = w(r, h(r)) = 0, and
T(r, 0) = T1, T(r, h(r)) = T0. Defining a stream function ψ(z, r) by u = ψz/r , w =
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Fig. 4 Streamlines for flow produced by prone patient sleeping face-up in the absence of secre-
tory flow (T0 − T1 = 0.1◦C).

−ψr/r and using the condition that

∫ h(r)

0

(
1
r

(ru)r + wz

)
dz = ∂

∂z
(ψ(r, h(r)) − ψ(r, 0)) = 0

some elementary calculations show that

ψ = ρ0gαrz2hr (z + 2h)(z − h)2(T1 − T0)
120µh2

.

u = gρ0hrαz(h − z)(5z2 + 5zh − 4h2)(T0 − T1)
120µh2

p = pa − ρ0gz + ρ0gα(3h2 − 20zh + 10z2)(T0 − T1)
20h

T = T1 + z
h

(T0 − T1).

Streamlines for the flow are shown in Fig. 4, assuming a temperature difference
of 0.1◦C, using values from Table 1 and now taking h = h0(1 − r2/a2). The flow is
of a toroidal nature, the maximum speed of the flow scaling with the temperature
difference. When T0 − T1 = 0.1 ◦C, the maximum speed attained by the flow is 3 ×
10−6 m/s, indicating that the flow produced by this mechanism is relatively weak.

5. Flow due to phakodenesis

The term “phakodenesis” is used to refer to the vibration of the lens of a human
eye as the head or eye moves. The lens is supported by the suspensory ligaments,
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which may be thought of as being equivalent to elastic pulleys. When focusing is
required, the suspensory ligaments exert a tension that changes the shape of the
lens. The lens itself (one of the few parts of the human body that continues to grow
from birth to death) may be thought of as a deformable bag that contains a clear
protein gel. The ability of the lens to change shape under the influence of the sus-
pensory ligaments is essential for accurate vision: the hardening of the lens with
age is the primary reason why large percentages of the population who have hith-
erto enjoyed perfect sight develop presbyopia in middle age and require spectacles.

From a clinical point of view, any form of enhanced phakodenesis is regarded
as undesirable, for it indicates weaknesses in the collagen structure of the suspen-
sory ligaments and the zonules (the hundreds of string like fibres that hold the lens
suspended in position and enable it to change shape to focus on distant or near ob-
jects). Noticeable phakodenesis may be reported, for example, in conditions such
as Marfan’s syndrome (an inherited disorder of the connective tissues).

As far as the fluid mechanics of the anterior chamber are concerned, our in-
terest in phakodenesis centres on the fact that movement of the lens acts to
pump fluid through the pupil aperture. We have not been able to locate any
quantitative or detailed measurements of lens movement due to phakodenesis
in extant literature. We will therefore not consider the fluid mechanical details
of how the lens interacts with flow behind the iris, but rather take the simpler
approach of assuming (i) that the pumping speed w0 caused by the lens move-
ment is a known function, (ii) that this function is sinusoidal in nature (because
any simple model of lens motion is likely to be based on linear springs) and
(iii) that no other flow mechanisms (buoyancy, secretory flow drainage, etc.) are
present so that the total net inflow/outflow to the anterior chamber is zero at all
times.

Under these assumptions we proceed once again using lubrication theory. In
contrast to the flows that have so far been considered in this study, however, the
nature of the flow produced by the lens movement means that the flow is now not
only unsteady but also can no longer be assumed to be a function simply of r and
z alone. The governing equations are

Pr = µuzz,
1
r

Pθ = µvzz, Pz = 0, (15)

1
r

(ru)r + vθ

r
+ wz = 0, (16)

with velocity boundary conditions u = v = w = 0, on the posterior surface of the
cornea z = h(r) and u = v = 0, w = w0(r, θ, t) on z = 0. Solving (15) and (16), we
find that the pressure P is a function of r , θ and t only and

u = Pr

2µ
z(z − h), v = Pθ

2µr
z(z − h),

w = w0(r, θ, t) + z2

4µ
Pr hr + 1

2µr2

[
z2h
2

− z3

3

]
[Pθθ + r(r Pr )r ],
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Fig. 5 Pumping velocity profile w0(r, θ, t) as given by (18) and (19) at t = 0 for phakodenesis-
driven flow.

the boundary conditions being satisfied so long as the pressure satisfies

1
r

(rh3 Pr )r + 1
r2

(h3 Pθ )θ = −12µw0(r, θ, t). (17)

Let us now assume that

P = p(r) sin θ cos ωt, w0 = 	(r) sin θ cos ωt (18)

where ω is the frequency of the pumping. Time-dependent pumping thus takes
place as the lens oscillates about the axis {{θ = 0} ∪ {θ = π}}, the two sectors of
the lens acting to force fluid both into and out of the anterior chamber. If we now
further choose

	(r) = Wr(r − b)H(b − r) (19)

where b is the radius of the pupil aperture and W (dimensions (ms)−1) is a constant
that characterises the strength of the pumping, then the amount of fluid entering
(and also leaving) the anterior chamber at any instant is (Wb4 cos ωt/6) m3/s. and
the flow into and out of the anterior chamber takes place as shown in Fig. 5.

Once again assuming a simple corneal shape profile, we now set h(r) = h0(1 −
r2/a2). Now (17) becomes the ordinary differential equation

r2(a2 − r2)3 prr + r(a2 − 7r2)(a2 − r2)2 pr − (a2 − r2)3 p

+12µWa6

h3
0

r3(r − b)H(b − r) = 0, (20)
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which may be solved in closed form in terms of Barnes’ extended hypergeomet-
ric functions 2 F1 (see for example, Abramowitz and Stegun, 1972). For practical
purposes the details of the particular integral term are so unwieldy that for flow
visualisation purposes it is simpler to solve (20) numerically, and this is how we
shall proceed below. This may be done using any standard method, but some care
must be taken over the boundary conditions. Near r = 0, (20) behaves as

r2 prr + r pr − p = 12Wr3bµ

h3
0

which has solution p ∼ Ar + B
r + 3Wr3bµ/2h3

0 (r ∼ 0) where Aand B are arbitrary
constants, so since the pressure must be finite to match with the pupil aperture flow
at r = 0 we must impose p(0) = 0. A similar analysis near r = a shows that

(a − r)3 prr − 3(a − r)2 pr − (a − r)3

a2
p = 0

so that p has the Bessel function solution

p ∼ ÃI1
( a−r

a

) + B̃K1
( a−r

a

)
a − r

(r ∼ a)

where Ã and B̃ are arbitrary constants. The pressure is thus finite at r = a only
when B̃ is chosen to be zero. Accordingly, when (20) is solved numerically using
an initial value scheme, we must impose p(0) = 0 and choose pr (0) so that the
pressure is finite at r = a. Numerically this may easily be accomplished, and the
function p(r) may be determined. The resulting flow is unsteady and fully three-
dimensional, but since now

v = p
2µr

z(z − h) cos θ cos ωt

the azimuthal speed v is zero when θ = π/2 or 3π/2. Figure 6 shows (u, w) velocity
vectors in the plane θ = 3π/2 for values as given in Table 1 with b = 2.5 mm and
W = 10.42, a value that corresponds to an amount 4.0 µl/min entering and leav-
ing the anterior chamber at each instant. We note that the aqueous is disturbed
primarily only in the region above the pupil aperture, and little flow takes place
in the rest of the chamber. This qualitative picture of the flow is confirmed by
Fig. 7 which shows contours of the flow speed

√
u2 + w2 for the same data used in

Fig. 6.
As noted earlier, the flow is three-dimensional and unsteady. It is unusual to be

able write down solutions for such flows in closed form, and the streamlines are
of great interest, showing a “pumping” flow above the moving lens and a toroidal-
type vortex nearer to the limbus. As usual, the three-dimensionality makes the flow
hard to display on a two-dimensional page. However, flow animations that can be
rotated in real time and viewed from many different angles may easily be created,
revealing the complicated nature of the fluid motion. Realistically, however, the
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Fig. 6 Velocity ((u, w))-vectors in the plane θ = π/2, θ = 3π/2 for anterior chamber flow driven
by phakodenesis with values as in Table 1 and b = 2.5 mm, W = 10.42 (ms)−1, t = 0 and w0 given
by (18).
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Fig. 7 Contours of flow speed
√

u2 + w2 for anterior chamber flow driven by phakodenesis
(parameter values identical to Fig. 6—light regions represent larger speeds).
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solutions in this section must retain a partly speculative nature until detailed ex-
perimental measurements of phakodenesis have been carried out. In particular,
the frequency of lens motion during phakodenesis appears to remain completely
unaddressed in medical literature, so that it is almost impossible to be certain that
inertial effects may be ignored.

6. The limitations of lubrication theory

In all of the flows that have been examined thus far it has been assumed that the
lubrication theory limit of fluid mechanics may be invoked. Some discussion of
this supposition is now apposite. As far as the Navier–Stokes equations are con-
cerned, the validity of lubrication theory is assured so long as both of the quan-
tities ε (the aspect ratio) and the reduced Reynolds number ε2 Re are much less
than one. As explained above (see Table 1), for a typical human eye the aspect ra-
tio (height/width) is h0/L = 2.75/11 = 1/4, while an upper bound for the reduced
Reynolds number ε2 Re is given (for buoyancy-driven flow) by

ε2 Re = LU
42ν

∼ (11 × 10−3)(1 × 10−4)
4210−6

= 11
160

= 0.06875.

The further assumption that (5) accurately determines the temperature requires
that the reduced Peclet number ε2 Re Pr should be much smaller than unity. Us-
ing a specific heat cp = 4200 J/kg K and a thermal conductivity k = 0.57 W/mK an
upper bound for this quantity is given by

ε2 Re Pr = 11ρ0νcp

80k
∼ 0.5

Since both the aspect ratio and the reduced Reynolds number ε2 Re are undeniably
“small,” we conclude that the lubrication theory limit is valid for the flow: for the
heat transfer part of the problem, however, it could be argued either that taking
1/2 to be “small” is pushing things too far, or that lubrication theory is known to
almost invariably give accurate results even when the “small parameters” are not
actually very small. Undoubtedly (as in all lubrication theory analyses) there will
be regions of the flow where lubrication theory is not valid (namely close to the
limbus): here, as usual, we argue that the main details and topology of the flow do
not depend on the behaviour in these regions.

One way in which this uncertainty may be permanently removed is to compare
the results from lubrication theory to those generated by a fully numerical study.
We carried out this programme of work using FEMLAB©, a commercial finite-
element equation solver, solving the full Navier–Stokes equations and correspond-
ing complete coupled convection/diffusion problem. For each of the flows consid-
ered in Sections 2–5 above, the agreement between the full numerical calculations
and the theory was remarkable. We now give an illustrative example: we calcu-
lated the flow and temperature profile for the buoyancy driven flow considered
in Section 2, using standard values and a temperature difference of one degree.
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Fig. 8 Numerical flow streamlines (left) and temperature contours (right) for buoyancy-driven
flow in the anterior chamber with a temperature difference of 1◦C using standard parameter val-
ues. The calculations were performed using FEMLAB© with a mesh consisting of 2752 linear
elements, giving a total of 18396 degrees of freedom.

Both streamlines and temperature contours are shown in Fig. 8: apart from the ob-
vious qualitative agreement with our previous theoretical calculations, the results
also show striking quantitative agreement. For example, for this flow the theory
predicts that the maximum value of the horizontal speed u will be 0.1783 mm/s
and will occur at the point (0, 0.578 × 10−3). The numerical calculations give these
quantities as 0.1738 mm/s and (0, 0.580 × 10−3) respectively.

Likewise, FEMLAB© was used to perform three-dimensional phakodenesis cal-
culations for the full Navier–Stokes equations. Once again, both the qualitative
and quantitative agreement with the lubrication theory solutions was remarkable:
for example, the theoretical value of the maximum horizontal speed on the z
axis predicts that speed to be 1.002 × 10−5 m/s at z = 1.375 mm, whereas the nu-
merical calculations (1888 elements, 10943 degrees of freedom) give values of
0.96 × 10−5 m/s and z = 1.369 mm respectively.

7. Flow due to REM

It is now almost exactly 50 years since Rapid Eye Movement (REM) during sleep
was discovered and reported in Aserinsky and Kleitman (1953). The phenomenon
has attracted continuing interest from a wide range of scientific disciplines includ-
ing ophthalmology, psychology, neurology and psychiatry and is familiar to mem-
bers of the public with no scientific background, who usually believe either that the
movement is associated with the subject “looking at what they are dreaming” or
that its purpose is “hard disc defragmentation”—the brain sorts and reprocesses
the information that has been gathered during the day. Though notoriously hard
to assess experimentally, it appears that the balance of current scientific opin-
ion favours the latter explanation (see, for example Crick and Mitchison, 1983;
Hobson, 1990).
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Recently, however, a radical alternative explanation for REM sleep was ad-
vanced in Maurice (1998). Partly inspired by the observation that corneal vascular-
ization was present in a patient who had suffered complete ptosis (eyelid droop)
and loss of ocular motility, this relied on the fact that, during sleep, the buoyancy
mechanisms that are normally responsible for stirring the aqueous humour in the
anterior chamber (see Sections 2 and 4) are not present. It is also known (see, for
example Maurice, 1967; Maurice, 1984) that the nutrients that are required to sus-
tain the cornea cannot come from the limbus and must be carried to the posterior
surface of the cornea by the aqueous. It was therefore suggested in Maurice (1998),
that the purpose of REM might be to promote mixing in otherwise stagnant aque-
ous humour so that the oxygen supply to the cornea could be maintained.

In order to evaluate the mixing that may be produced by REM during sleep,
it is necessary to understand the nature of REM. REM sleep is characterised by
rapid (and typically jerky) movements of the eyes behind closed lids. These appear
to take place in all directions and may involve single, disconnected movements or
oscillatory motions. Periods of REM typically last initially for about 20 min, dur-
ing which electroencephalographical information indicates a state close to arousal
(see, for example Maurice, 1998). Periods of REM sleep become more prolonged
as slumber continues; patients typically experience three or four periods of REM
sleep during a night.

Aqueous mixing ascribed to REM has been reported in both humans (see
Maurice, 1998) and rabbits (see Holm, 1968). The details of eye speed, position
and rotation during REM were measured in Takahashi and Atsumi (1997), over
a period of 40 nights’ polysomnography performed on 20 healthy male patients.
They reported a mean eyeball rotation speed of about 60◦/s, which, with a typical
mean sagittal diameter of 24 mm (see for example, Fatt and Weissman, 1992) cor-
responds to a linear speed of 0.0125 m/s. The number of eye movements averaged
about 16 per min (one every 4 s) and the average distance of each movement was
6 degrees of rotation, corresponding to a distance of about 1.26 mm. The average
time of movement was thus around 0.1 s, but is movement of this sort sufficient
to cause the required amount of mixing? (Note that, compared to rapid types of
eye movement during waking such as reading or saccadic motion where 20 ◦ move-
ments can take place at 1000◦/s (David et al., 1998), REM during sleep is a rela-
tively sedate affair.)

Considered solely from a fluid mechanics viewpoint, the problem to be solved
is to determine the flow that takes place when a closed container with boundary
∂ B = {z = 0 ∪ z = h(x, y)} filled with fluid is subjected to a solid body translation
qs(t). We must therefore solve the Navier–Stokes equations

qt + (q.∇)q = − 1
ρ

∇ p + ν∇2q, ∇.q = 0

with q = qs(t) on ∂ Bt (where ∂ Bt is the boundary of the moving anterior chamber)
and q(x, 0) = q0(x). It is obvious, however, that one solution of this problem is
given by

q = qs(t), p(r, t) = −ρr.qs(t). (21)
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The fluid thus always moves simply as a solid body, and no mixing can ever
take place, completely destroying the hypothesis advanced in Maurice (1998). Of
course, it is not clear that (21) is the only solution to the problem. Indeed, intuition
suggests that some mixing may occur if a closed container of fluid is translated fast
enough. It is therefore tempting to try to analyse the linear stability of the solution
(21). Unfortunately, this gives rise to a very awkward problem whose resolution is
outside the scope of the current study. Essentially, we are required to determine
the stability of a solution whose base flow is (a) unsteady and (b) takes place in
a region which has a non-planar boundary. To give an idea of some idea of the
difficulties involved, consider the stability problem for a steady rigid body transla-
tion base flow q = U0êx, p = constant. Proceeding in the normal way by linearis-
ing and eliminating the pressure, we find that the non-dimensional perturbation
stream function ψ̂ satisfies the equation

∇̂4 ψ̂ = Re ∇̂2 (ψ̂t̂ + ψ̂x̂)

(where Re = LU0/ν) with ψ̂ = ψ̂n = 0 on ẑ = 0 and ẑ = ĥ(x̂). It is now possible
to set ψ̂ = φ̂(x̂, ẑ)eiω̂t̂ in the normal way to remove the time dependency, but the
geometric dependence of the boundary conditions means that no Orr–Sommerfeld
type ordinary differential equation may be derived, and a fully two-dimensional
eigenvalue problem must be solved.

Since the stability problem for linear translation appears to be extremely diffi-
cult, we should ask if it is possible to invoke Navier–Stokes uniqueness theorems
to determine whether or not rigid body motion is the only possible flow in a rigid
sealed container. Unfortunately, such theory is not at all well-developed. The ex-
istence of weak solutions (i.e. solutions satisfying the weak form of the Navier–
Stokes equations in an averaged function-theoretic sense) was proved over sev-
enty years ago (Leray, 1934), but no real progress has since been made in proving
weak uniqueness. For strong (i.e. smoother) solutions even less progress has been
made (for a discussion of cases where the boundaries move, see Foias et al. 2000).

One final point should be made concerning rigid body motion of aqueous dur-
ing REM: the simple “rigid body” solution given above is valid only for pure
translation of the boundaries and evidently no longer applies when rotation is in-
volved. To illustrate this, let us consider a flow region with a circular boundary
and use cylindrical polar coordinates. Under pure translation (21) provides an ex-
act “rigid body flow” solution to the Navier–Stokes equations. However, if the
motion of the boundary is given by qs = f (t)êθ , then the “rigid body velocity”
q = 0êr + r f (t)êθ + 0êz is not an exact solution of the Navier–Stokes equations.

Throughout this paper, we have ignored the curvature of the iris on the grounds
that the anterior chamber is significantly smaller in height the radius of the eye. In
the case of REM, to leading order the anterior chamber thus undergoes a purely
translational movement. To next order, however, rotation (about the axis of the
eye) is involved, centripetal accelerations and centrifugal forces can no longer be
ignored, the rigid body motion discussed above is no longer an exact solution of
the Navier–Stokes equations and mixing must occur. The resultant flow problem
is, of course, unsteady and fully three-dimensional and its analysis appears to be
possible only via a large-scale numerical study.
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8. Conclusions

In this study simple fluid dynamical models have been posed for all of the mech-
anisms known to the authors that may cause the flow of aqueous in the anterior
chamber. Each mechanism and the resulting flow has been analysed in isolation:
however the linearity of the lubrication theory equations ensures that combina-
tions of these flows may also be modelled and analysed if desired. Though the use
of lubrication theory constitutes an approximation, its adoption is justified both by
the parameter values involved and the agreement of the result with known data
and estimates.

One of the key results of the work presented above is that the buoyancy induced
by temperature gradients in the eye is by far the most pervasive mechanism for
causing anterior chamber flow, producing velocities that are orders of magnitude
greater than those due to any other physical mechanism. Though gravity and se-
cretion of aqueous from the ciliary body can give rise to flows which may be impor-
tant in the absence of temperature gradients, the role that buoyancy-driven flow
has to play in influencing the formation of hyphemas, hypopyons and Krukenberg
spindles is a dominant one.

Our analysis of phakodenesis is necessarily more speculative since the com-
plete absence of any experimental results concerning lens movement means that
we have no information as to the strength of the flows that may be produced.
If any experimental evidence should come to light, then a number of possibili-
ties present themselves. An elastic model of the motion of the lenses suspended
from the suspensory ligaments could be proposed, and since presumably the mo-
tion of the lenses is of relatively small magnitude it would be possible not only
to attempt to calculate the vertical inlet speed w0(r, θ, t) but also to use lubrica-
tion theory to couple the fluid motion to the flow behind the iris. In this way a
very detailed model of phakodenesis-driven flow in the anterior chamber could be
studied.

Regarding the purpose of REM during sleep, the suggestion of Maurice (1998)
is undoubtedly a highly controversial one. Indeed, in informal discussions with
medical practitioners the authors have been unable to find any supporters of the
idea that the evolutionary purpose of REM is to prevent corneal anoxia. From a
fluid mechanics point of view, we have exhibited strong evidence that REM cannot
produce aqueous mixing. It is only the lack of suitable uniqueness theorems for the
Navier–Stokes equations that prevents this evidence from being decisive, and we
have seen that the fluid mechanical stability problem that would settle the issue for
certain is unfortunately a formidable technical challenge. On balance, however,
it appears highly unlikely that REM can produce aqueous mixing and we must
discount the proposals in Maurice (1998).

There may also be scope for considering flow that takes place not in, but in
the vicinity of the anterior chamber. During the passage of flow of aqueous be-
tween the ciliary body and the canal of Schlemm, the aqueous exits the anterior
chamber via the trabecular meshwork, which possesses no independent means of
nourishment and thus relies on the aqueous humour to remain healthy. Studies
of the manner in which aqueous passes from the anterior chamber into the canal
of Schlemm, and how this affects aqueous facility have previously been carried
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out (see, for example Allingham et al. (1992); Johnson et al. (1992); Ethier et al.
(2004)). Further calculations based on Darcy’s or Ergun’s law (Ergun, 1952) could
be carried out to determine (for example) what degree of blockage of the trabec-
ular meshwork would be required to threaten the onset of elevated intraocular
pressure. Finally, the ultrafiltration process that produces aqueous from blood is
little understood. Modelling the flow produced by the ciliary body would undoubt-
edly be a valuable exercise.
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