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Abstract

Planar cells provide an attractive alternative to traditional cylindrical cells for polymer electrolyte conductivity measurement as

they not only allow sample quantity minimisation but also equilibration with vapour. They are also a key component in the parallel

screening of combinatorially synthesised arrays of samples. A finite element simulation technique is used to calculate the complex

cell constants of planar cells for a wide range of cell geometries. The real part and the phase of the cell impedance at the high

frequency limit are identified as the most sensitive indicators of the polymer thickness, and thereby the cell constant, through which

the measured impedance value yields the conductivity. Cell geometries are identified for which the conductivity may be determined

in an optimally accurate fashion.
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1. Introduction

Polymer electrolytes belong to an important class of

electrochemical materials with applications in solid-state

electrochemical devices such as thin film batteries [1],

fuel cells [2], electrochromic displays [3] and chemical

sensors. Many new materials are currently being synthe-

sised in efforts to discover compositions that exhibit

improved properties, in particular the ionic conductivity

for lithium ions or protons. In many cases it is also

important to measure changes in the conductivity due to

the uptake of water, non-aqueous solvents, or other

substances that may be absorbed from the ambient

atmosphere.

Normally conductivity measurements are performed

in a cylindrical cell [4] of the type shown in Fig. 1. An

alternating potential is used to bypass the ion-blocking

interfaces between the sample and inert, electronically

conducting contacts [5]. The complex impedance, Z (V)

of the cell is measured as a function of frequency f (Hz),

and the results can be analysed to give a single value of
the polymer resistance, R (V), using the equivalent

circuit of Fig. 2. The extraction of a single, real,

resistance from the frequency-dependent complex im-

pedance data relies on linear extrapolations of impe-

dance data to the real axis either from the line due to the

series RCdl combination at low frequency (where Cdl (F)

is the double layer capacitance), or the semicircular arc

due to the parallel RCg combination (where Cg is the
dielectric capacitance) at high frequency (see Fig. 2). It

should be noted that the validity of these extrapolations

depends on the one-dimensional nature of the appara-

tus, which causes the potential and current density to be

constant perpendicular to the cylinder axis. The con-

ductivity s (S m�1) is then obtained from the measured

resistance using Eq. (1).

s�k=R�l=(AR) (1)

where l is the sample thickness (m), A is the sample

cross-sectional area (m2) and the cell constant k is given

simply by l/A (m�1).
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Although such cells give a straightforward relation-

ship between the impedance and the conductivity, their

disadvantages are that a rather large sample size is

required and, more importantly, the difficulty of equili-

bration with an ambient vapour such as water or a

solvent. Fig. 3 illustrates an alternative cell [6] for

measuring the conductivity of a polymer electrolyte in

which the quantity of sample is minimised. The polymer

is applied as a thin film mainly over the unmasked area,

covering the electrodes and the gap between them. This

configuration allows fast equilibration with the vapour

phase, so that the composition can be changed (e.g. by

humidification) during the course of successive conduc-

tance measurements. The dimensions suggested in Fig. 3

have been designed to give easily measured resistances

for samples with conductivities in the range 101

S m�1�/s�/10�4 S m�1. The appropriate frequency

range of the simulations was determined as follows.

Although an upper frequency limit of 10 MHz was

chosen to correspond to the maximum frequency of

most impedance analysers, it was found that the most

interesting impedance phenomena occurred at lower

frequencies as shown in the figures. The low frequency

limit was 100 Hz, which was well below the minimum

value of the quantity (1/RC ) for a sample of conductiv-

ity 101 S m�1 and an interfacial capacitance of 0.1

F m�2 for the cell dimensions under consideration.

A sample volume of about one-tenth of that required

for a cylindrical cell is particularly advantageous for the

application of combinatorial synthesis techniques. A

disadvantage of this method is that the cell constant is

more difficult to calculate, and even the procedure for

extrapolating the impedance to give the resistance is not

straightforward. Although changes in conductivity with

temperature and ambient gas are easily monitored,

absolute values are subject to errors in the determination

of the cell constant.

In our previous work [6] on planar cells, values of the

cell constant were calculated using a Schwartz�/Chris-

toffel (SC) transformation method, which yielded an

analytical solution to the case with semi-infinite, non-

blocking electrodes. This suggested an experimental

procedure in which a combination of resistance mea-

surements for two cells with different gap widths could

yield both the conductivity and the film thickness.

However, in that work the blocking nature of the

interface was ignored in the derivation of the cell

constant on the grounds that, in the high frequency

limit, the impedance of the double layer capacitance

tends to zero. Although this approximate treatment

gave absolute conductivity values accurate to 5%,

subsequent work has shown that the omission of the

interfacial capacitive impedance cannot be justified over

Fig. 1. Conventional cylindrical cell design for ionic conductivity measurements on polymer electrolytes.

Fig. 2. Equivalent circuit corresponding to the cell of Fig. 1 and an illustrative simulated complex impedance (Nyquist) plot for Rw �/1000 V, Cdl�/

5�/10�6 F, Cg�/5�/10�10 F, fmax�/107 Hz, fmin�/103 Hz.

Fig. 3. The proposed planar cell for conductivity measurement.

Typically, d �/200 mm, w �/20�/200 mm, h �/10�/200 mm, b �/500 mm.

A.D. Fitt, J.R. Owen / Journal of Electroanalytical Chemistry 538�/539 (2002) 13�/2314



a wide variety of planar cell geometries and polymer

conductivities. Furthermore, a subsequent analysis

showed that the simple equivalent circuit of Fig. 2

cannot now be applied since the cell geometry is no
longer essentially one-dimensional.

The current work recognises the fact that to effect a

proper description of the general behaviour of a planar

cell over a range of frequencies requires the introduction

of a complex cell constant that takes into account the

phase variations of the impedance. The complex cell

constant, K , (m�1) may be defined by Eq. (2) and is a

function of the four variables b , d , h and w defined in
Fig. 3 as well as the frequency, f .

K�sZ (b; d; h;w; f ) (2)

The overall objective of the current work is therefore to

understand the relationship between the complex cell

constant and the cell parameters in order to specify a

viable experimental procedure and method of interpreta-

tion of results that will yield reliable conductivity values

for films of unknown thickness.

Since the SC approach cannot easily be generalised to

cover the effects of interfacial capacitance and the finite

geometry boundary conditions, in this work we have

used a finite element simulation approach, which is

described briefly below. Further details will be given in a

manuscript currently under preparation by the present
authors. Work on the experimental application of the

technique is also in progress and involves the fabrication

of multiple electrode arrays using photolithographical

techniques for combinatorial electrolyte deposition. This

work will be reported separately.

2. A preliminary analysis

The geometry of Fig. 3 may be simplified to two
dimensions by assuming that the electrode breadth, b , is

large compared to d and w , and ignoring end effects. In

this two-dimensional model, the product of the resis-

tance and cell breadth Rb is represented by R̄ (V m) and

the cell constant K̄ (�/Kb ) is dimensionless. Also the

interfacial capacitance per unit breadth, Cdl/b will be

designated by C̄dl (F m�1) and the two-dimensional

conductivity sb by s̄ (S): Henceforth all ‘two-dimen-
sional’ quantities will be distinguished by an overbar.

A further simplification will be to assume that the

admittance due to the dielectric permittivity is negligible

over the frequency range of measurement. The high

frequency limit of the impedance will thus be repre-

sented by a single, real value and the only frequency

dispersion under consideration will be that due to the

double layer capacitance.
A starting point for the analysis of the cell constant

for a planar cell will be the consideration of the effect of

changes in the geometrical parameters d , h and w . Fig. 4

shows a schematic diagram of the nine cases generated

by changing the magnitudes of w and h relative to d and

a path through the five cases (arrowed) considered most

relevant to the current study. Other areas of the diagram
will be explored in a further study.

Case SE is essentially a one-dimensional case, where

the interfacial capacitances are effectively in series with

the resistance Rw of the electrolyte between the electro-

des. The real part Z ? of the impedance must therefore be

nearly equal to Rw at all frequencies. Since the resistance

Rd due to the electrolyte above each electrode is

insignificant, the interfacial impedance will be domi-
nated by the capacitance Cdl of the electro-

de j electrolyte interface. This case is therefore

represented by the equivalent circuit of Fig. 2 with a

resistance Rw and two capacitances Cdl, but without the

effect of the permittivity capacitance Cg.

Case S was encountered briefly in our previous work

[6], where a Warburg impedance effect was observed as

a 458 line in the Nyquist plot following the high
frequency intercept at Rw. This behaviour was explained

according to a transmission line analogy, where Rd

generated a Warburg impedance effect from the high

frequency limit up to a frequency of 1 /(RdCdl) at which

point the slope increased gradually to 908, correspond-

ing to a series combination of the interfacial capacitance

and an electrolyte resistance due to a combination of

both Rw and Rd. The transition from case S to case SW
should correspond to an increase in the ratio of the

width of the Warburg impedance region to the high

frequency intercept.

Case W, obtained by increasing the height of the

electrolyte, was not encountered in our previous work

[6] and the form of the impedance was difficult to

predict before the present simulations.

Case N is similar to that of two parallel microband
electrodes [7] placed in an electrolyte solution of large

height compared to the electrode width and separation.

Here we may expect to observe that the cell constant is

almost independent of the electrolyte height. In this

case, the cell constant may be determined experimentally

by immersing the cell in a solution of known conductiv-

ity and measuring the resistance.

Finally, an understanding of case O was one of the
major goals of this work, namely to discover a method

of determining the electrolyte height from the cell

constants of a cell in which the parameters d , h and w

are of the same order of magnitude.

3. Method of simulation

The spatial distribution of potential, f , in the bulk

conductor obeys Laplace’s equation Eq. (3):

92f�0 (3)
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Referring to the diagram of Fig. 3, we may assume that

the current flux is zero at all boundaries of the sample

except for the electrodes. At insulating boundaries the

boundary condition is therefore

n̂ �9f�0 (4)

where n̂ is the unit outward-pointing normal to the

polymer.

Each electrolyte j electrode interface will be modelled

as a simple capacitor representing ion blocking beha-

viour, although the theory could easily be extended to

encompass more complicated interfacial effects. The

boundary conditions at the electrodes 1 and 2 (see Fig.

3) are thus

C̄
@(f� f1)

@t
� s̄n̂1 �9f

C̄
@(f� f2)

@t
� s̄n̂2 �9f (5)

where n̂1 and n̂2 are the unit outward normals to

electrodes 1 and 2, respectively, C̄ (F m�1) is the

capacitance per unit length of interface, f (V) is the
potential on the electrolyte side of the interface, and f1

and f2 are the excitation potentials on each electrode,

which will be written

fk�ak exp(ivt) (6)

Here v is the angular frequency 2pf (radian s�1) and

the (real) ak (k�/1, 2) are the amplitudes of the

potentials at each electrode. Note that for all the
simulations described below we took a1�/ 1 and a2�/0

V.The potential at any point
¯
x within the polymer may

be expressed as

f�F(
¯
x)exp(ivt) (7)

where the real and imaginary parts of F(
¯
x) are written

F(
¯
x)�F?(

¯
x)� iFƒ(

¯
x) (8)

Equating real and imaginary parts, the problem

becomes

92F?�92Fƒ�0 (9)

in the polymer with boundary conditions

n̂ �9F?� n̂ �9Fƒ�0 (10)

at the insulating boundaries, and

�vC̄Fƒ� s̄n̂k �9F?

vC̄(F?�ak)� s̄n̂k �9Fƒ (11)

at the electrode interfaces (k�/1, 2).

The simulations described in the current study were

carried out using the finite element partial differential

equation solver FASTFLOv3.0 [8]. The coupled Laplace

equations were discretised in the standard way, and a

simple Crout LU-decomposition was used to solve the

resulting linear simultaneous equations. All calculations
were carried out using a mesh consisting of 800 six-

noded triangles; where appropriate, the mesh was

concentrated at the edges of the electrodes adjacent to

the inter-electrode gap as shown in Fig. 5. This proved

to be particularly important in cases where the electrode

gap width w was small compared to the electrode length

d . The computational region for all calculations in-

cluded ‘end gaps’ of width 200 mm to the left and right of
electrodes 1 and 2, respectively. It may easily be

confirmed that the dimensions of the end gaps have a

negligible influence upon the results. Including pre- and

Fig. 4. The nine cases under consideration, distinguished by their aspect ratios, and the path taken in the course of the present analysis (arrowed).
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post-processing, each of the calculations ran in a few

seconds of CPU time on a standard 600 MHz desktop

machine running under LINUX. The usual convergence

tests were carried out to establish that the numerical

results were insensitive to further mesh refinement: in all

cases further doubling the number of mesh elements to

1600 made a difference of less than 1% to the results.

The primary output of the numerical simulations is

the real and imaginary parts of the cell current per unit

electrode breadth, I /b (A m�1). Table 1 shows an

example output for case N in which the sample height,

h�/ 1000 mm is five times as large as both the gap width,

w and the electrode length, d . Comparing the calculated

currents on each electrode provided an extra numerical

check on the results; despite inaccuracies due to the

finite mesh size, the observed 1% variation showed that

the numerical errors were small. At very high frequency

the imaginary current changes sign; this is also because

of small numerical errors. The absolute currents at each

electrode were averaged to obtain the real and imagin-
ary parts I ? and Iƒ of the cell current as functions of

frequency.

The impedance per unit reciprocal length is given by

Eq. (12)

Zb (V m)�V=(I=b) (12)

where V�/1 V.

The product of the complex cell constant K and the

electrode breadth, b , (displayed in the last two columns

of Table 1) may then be calculated by taking the
reciprocal of the current and multiplying by the

conductivity as shown in Eq. (13).

K̄�K̄ ?� iK̄ƒ�Kb�sZb

�sV (I=b)�1 (dimensionless) (13)

The limiting values of the real parts of K̄ at high and

low frequency were noted in each case, and hereafter will

be designated by k̄� and k̄o; respectively (dimension-

less).

Fig. 5. Typical finite element mesh for simulations (in this case d�/

h�/w�/ 200 mm).

Table 1

Raw results produced by the simulation

Electrode width d�2�10�4 m

Electrode gap w�2�10�4 m

End gaps �2�10�4 m

Polymer height h�1�10�3 m

Aspect ratio �1

Conductivity s�1 S m�1

Capacitance per unit area C�0.1 F m�2

Frequency v /rad s�1 Real current/A m�1 Im current/A m�1 Real current/A m�1 Im current/A m�1 Dimensionless complex

cell constant

Electrode 1 Electrode 1 Electrode 2 Electrode 2 K ? K ƒ

1000 �1.42003E�04 9.53066E�03 1.41291E�04 �9.48943E�03 1.565835 105

2500 �8.86468E�04 2.37987E�02 8.82025E�04 �2.36958E�02 1.565831 42

5000 �3.53093E�03 4.73989E�02 3.51324E�03 �4.71941E�02 1.565814 21

10 000 �1.38896E�02 9.32427E�02 1.38201E�02 �9.28411E�02 1.565741 11

20 000 �5.21055E�02 1.75014E�01 5.18455E�02 �1.74271E�01 1.565458 5

25 000 �7.77905E�02 2.09135E�01 7.74034E�02 �2.08256E�01 1.56524 4

30 000 �1.06241E�01 2.38163E�01 1.05714E�01 �2.37174E�01 1.564993 4

40 000 �1.66970E�01 2.81154E�01 1.66148E�01 �2.80024E�01 1.564344 3

50 000 �2.27082E�01 3.06477E�01 2.25975E�01 �3.05295E�01 1.563544 2

60 000 �2.82352E�01 3.18261E�01 2.80991E�01 �3.17095E�01 1.562601 2

70 000 �3.31003E�01 3.20593E�01 3.29429E�01 �3.19488E�01 1.561537 2

80 000 �3.72787E�01 3.16783E�01 3.71041E�01 �3.15767E�01 1.56037 1

90 000 �4.08228E�01 3.09239E�01 4.06347E�01 �3.08326E�01 1.559116 1

100 000 �4.38143E�01 2.99600E�01 4.36161E�01 �2.98796E�01 1.5578 1

200 000 �5.77248E�01 2.02921E�01 5.75143E�01 �2.02917E�01 1.544026 1

500 000 �6.45490E�01 8.89404E�02 6.43894E�01 �8.90489E�02 1.522123 0

100 000 �6.56989E�01 3.06925E�02 6.55119E�01 �3.07426E�02 1.52093 0

2 000 000 �6.46088E�01 �1.01429E�02 6.44225E�01 9.35980E�03 1.549657 0

5 000 000 �6.11239E�01 �2.63832E�02 6.10572E�01 2.54201E�02 1.633977 0

10 000 000 �5.95622E�01 �1.17965E�02 5.95314E�01 1.74487E�02 1.678339 0
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In order to express the cell constants in the normal

three-dimensional units we finally divided the K̄ values

by a b value of 0.5 mm which corresponds to the

dimensions of our prototype cell. k̄� should be thought
of as the real cell constant at high frequency, where the

interfacial impedance disappears. k̄o; on the other hand,

is a real value obtained by extrapolating the complex

impedance at low frequency to the real axis. In previous

methods (using, for example, electrode immersion for

liquids or cylindrical cells for polymers) of determining

electrolyte conductivity it has been necessary to consider

only a single real cell constant k . This is because in those
cases, the values k were identical to both k� and ko. In

this work, however, it will transpire that this is no longer

true, and that a consideration of the differences between

k� and ko will give valuable information about both the

conductivity and the thickness of the polymer in a

planar cell.

4. Results and discussion

We now turn to a detailed discussion of the results for

each of the cases highlighted above except for case SE

which, as noted above, reduces to a one-dimensional

model.

The simulation results of Fig. 6 cover cases S (d�/200

mm, h�/20 mm, w�/200 mm) and SW (d�/ 200 mm, h�/

w�/20 mm) along with the transition from S to SW. We

observe a separation of the cell constant plots into two

regimes*/a Warburg impedance at high frequency and

a vertical spur at low frequency. The real parameters, k̄�

and k̄o may be determined at high and low frequency

limits by extrapolation of the 458 line and spur,

respectively to the real axis. Fig. 7 shows the dependence

of the two cell constants on w /h when h�/ 20 mm. We
find that the high frequency constant k̄� fits very well to

a linear function of w /h ,

k̄��aw=h�b; where a�1:014 and b�0:459 (14)

The fact that the value of a is extremely close to unity

is consistent with the obvious one-dimensional analysis

where it is assumed that the current density is constant.

Over most of the range considered aw /h �/b and

therefore a good approximation to k̄� for both the cases

S and SW is

k̄�:w=h (15)

The low frequency constant, k̄o; is larger than k̄� by

an almost constant value. The difference (k̄o� k̄�) has a

value of about 6.7. This can be explained according to

the transmission line model shown in Fig. 8, which

accounts for the distribution of the double layer
capacitance over an increasing resistance path toward

the outer edge of the electrode. The standard transmis-

sion line formula for impedance [9] and its low

frequency approximation are given in Eq. (16).

Z� (Rd=Gdl)
1=2 coth[(RdGdl)

1=2]�1=Gdl�Rd=3

for v�(RdCdl)
�1 (16)

where Rd denotes the distributed electrolyte resistance

(as shown in Fig. 8) and Gdl (�/ivCdl) the interfacial

admittance.
In the present case, d /h�/ 10 and Rd�d=(hs̄) because

of the one-dimensional nature of the distributed resis-

tance. Therefore the total effective resistance, Zeff for the

electrolyte paths above both electrode interfaces (added

in series) is, to leading order in vRdCd,

Zeff �2Rd=3�(2=3)(d=hs̄) (17)

and thus

(k̄o� k̄�)� s̄Zeff �2=3(d=h):6:7 (18)

This provides a satisfactory explanation of the value

of the difference between the two cell constants noted

above and also provides a useful quantitative expression
for the determination of the conductivity from experi-

mental impedance results in cases where h /d �/1 and the

electrolyte height is known accurately.

Fig. 6. Nyquist plot of complex cell constants from finite element

simulation results for cases S, SW and the transition between them

(h�/20 mm, d�/200 mm). Points are shown at three points per decade

from the maximum frequency of 105 rad s�1.

Fig. 7. Dependence of the cell constants calculated by finite element

simulation (symbols) on w /h (h�/ 20 mm, d�/200 mm). The two solid

lines are the best-fit straight lines through the data.
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The simulation results shown in Fig. 9 illustrate how

the current paths depend on frequency in cases S, SW

and S0/SW. At the highest frequency the current paths
lie mainly between the closest points on the electrodes.

At intermediate frequencies corresponding to the War-

burg impedance the current spreads outwards until, at

the lowest frequency, the whole of the electrode is

involved.

The frequency dependence of the real part of the

Warburg impedance is shown in the plot of K̄ ? versus

v�1/2 in Fig. 10. This corresponds to the high frequency
approximation of Eq. (16), which gives

Z�(Rd=Gdl)
1=2

� (1� i)(2v)�1=2(Rd=Cdl)
1=2

for v�(RdCdl)
�1 (19)

The inclined line of the plot corresponds to the

transition between k̄o and k̄� according to Eq. (19),

and confirms that the frequency dependence is as

expected for the equivalent transmission line circuit.
This terminates our analysis of cases S, SW, and the

transition between them. We conclude that the beha-

viour of planar cells with very thin electrolyte layers may

be explained using the notion of a complex cell constant.

The theory shows that the conductivity may be obtained

by measuring either the high frequency limiting value or

the real intercept at low frequency of the impedance,

and using Eqs. (19) and (16), respectively. We note,

however, that the application of these equations requires

accurate knowledge of the sample height h .

We now investigate the transition from case SW to

case W (w �/h �/d). The complex cell constant is shown

in the Nyquist plot of Fig. 11, where the gap width is

held constant while the sample height is increased. We

observe that the 458 (Warburg) line that was present in

the previous cases discussed has now been replaced by a

line with greater slope. This may be interpreted as a

Fig. 8. A transmission line model for explaining planar electrode behaviour in cases S, SW, S0/SW. (The individual components r and c represent

the resistance and capacitance per unit electrode length of the distributed parameter network.)

Fig. 9. Contours of current distribution from finite element simula-

tions at low, medium and high frequencies. Contours of the quantity

(E
¯
�/E

¯
)1/2 are shown in 10% increments from 0.1 max(E

¯
�/E

¯
)1/2 to 0.9

max(E
¯
�/E

¯
)1/2 for the case w�/20 mm, h�/20 mm, d�/200 mm, s̄�

0:1 S; C̄�0:1 F m�1 for frequencies v�/1000 rad s�1 (top picture),

v�/10 000 rad s�1 (middle picture) and v�/100 000 rad s�1 (bottom

picture).

Fig. 10. Plot of the real part K̄? of the cell constant vs. (frequency)�1/2

showing finite transmission line behaviour.

Fig. 11. Nyquist plot of complex cell constants from finite element

simulation results for cases SW, W and the transition between them

(w�/20 mm, d�/200 mm). Points are shown at three points per decade

from the maximum frequency of 105 rad s�1.
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constant phase element (CPE). CPE behaviour is a

common subject of debate in impedance analysis, where

its origins have been attributed to various phenomena

such as electrode roughness or non-ideal capacitive
behaviour. We shall see that a CPE can arise (albeit

over a restricted frequency range) purely from a simple

geometrical effect. This is an important finding that will

be discussed further below.

Case N (h �/w �/d ) corresponds to a pair of micro-

band electrodes. The complex cell constant K̄ is shown

in the Nyquist plot of Fig. 12. We observe that the real

part is almost constant, i.e. k̄o� k̄� and that the
magnitude of the imaginary part decreases with increas-

ing frequency. This is suggestive of a series combination

of a resistance (real part) and a capacitance (imaginary

part). We further note from Fig. 12 that, as might be

expected, for each frequency the imaginary part does

not change significantly with w . However, the real part

decreases monotonically, but not linearly, with w .

The change in the cell constant k̄o with w is shown in

Fig. 13. The results may be compared with the analytical

(SC) solutions of Jacobs et al. [10], who give the

formula:

k̄�
2k(w=(w � 2d))

k?(w=(w � 2d))
(20)

where k (m ), the complete elliptical integral of the first

kind, is given by

k(m)�g
1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � t2)(1 � m2t2)

p (21)

and k?(m)�k(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

p
):/

Eq. (20) is strictly applicable only in cases where the

electrolyte sample extends for an infinite distance both

above and either side of the electrodes. Nevertheless, we

note that the agreement between Eq. (20) and the

simulation results shown in Fig. 13 is remarkably
good, therefore further increasing our confidence in

the reliability of the simulation method.

Fig. 14 shows the location of the main current paths

for a typical case where h is much greater than d and w .

We note that the current paths do not extend far above

the electrode at low frequency and are even more

localised at high frequency. Evidently we may therefore

expect the cell constants k̄� and k̄o to be relatively

insensitive to the sample height, h . The similarity in the

values of k̄� and k̄o (as observed in Fig. 12) is explained

by the observation that, whatever the frequency, most of

the potential drop is estimated to be in the region close

to the electrode surface.

Although this case could be used as a basis for

measuring polymer electrolyte conductivity it has the

disadvantage of requiring very thick films, so that the

object of minimising the sample quantity would be

defeated. Therefore we shall continue to the final case O,

where the electrode width, gap width, and electrolyte

height are all similar to each other.

Fig. 12. Nyquist plot of complex cell constants from finite element

simulation results for cases N, NW and the transition between them

(h�/1000 mm, d�/200 mm).

Fig. 13. Values of k̄o from finite element simulation compared to SC

calculations for case N (h�/1000 mm, d�/200 mm).

Fig. 14. Contours of current distribution from finite element simula-

tions at low and high frequencies. Contours of the quantity (E
¯
�/E

¯
)1/2

are shown in 10% increments from 0.1 max (E
¯
�/E

¯
)1/2 to 0.9 max

(E
¯
�/E

¯
)1/2 for the case w�/20 mm, h�/1000 mm, d�/200 mm, s̄�0:1 S;

C̄�0:1 F m�1 for frequencies v�/1000 rad s�1 (top picture) and

v�/100 000 rad s�1 (bottom picture).
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Simulation results for a range of cell geometries close

to case O are displayed in the Nyquist plot of Fig. 15. In

the investigation above of the transition between cases

SW and W we noted the existence of CPE behaviour: the

results of Fig. 15 also show linear regions with slopes

greater than 458. We also note that both k̄o and k̄�

increase with increasing w /h .

On close examination it was found that the gradient,

�dK̄ƒ=dK̄ ?; of the Nyquist plot at high frequency was

not quite constant. The gradient was therefore measured

at the high frequency intercept as shown in Fig. 16,

where the scale of the imaginary axis has been magnified

to show that well-defined gradients and intercepts may

be obtained. Fig. 17 further shows the dependence of the

gradient�dK̄ƒ=dK̄ ? upon h /d for various values of w /d .

We note that the gradient is a sensitive indicator of the

sample height . The dependence of the gradient on the

sample height may be further investigated; we observe

from Fig. 17 that the data points for the case w /d�/1 fall

almost on a straight line for the whole range of h /d

between 0 and 1. For smaller values of w /d the data

deviate from this line approximately when h /d exceeds

w /d .

These results fulfil the major objective of this study.

They not only provide a method for determining the

sample height but also indicate the optimum cell

dimensions for measuring polymer film thicknesses

within a given range. For example, given the range

h�/10�/100 mm commonly encountered for films formed

by solvent casting, the cell should have both a gap width

w and an electrode width d of approximately 100 mm for

accurate determination of h by this method. In short,

cells of type O are the most convenient if the polymer

height is uncertain.

The above result will be useful only if the high

frequency behaviour is not affected by parallel admit-

tances (such as the input capacitance of the instrumen-

tation or the dielectic permittivity of the sample itself).

In practice, however, at high frequency limits the

measured impedance is sometimes obscured by such

effects. We shall therefore seek a further relationship

between the complex cell constant and the geometry in

case O.

The values of k̄� and k̄o and their dependence on w

for given values of h are shown in Fig. 18. We should

remember here that the measured quantity is Z , not k ;

however, ratios between two k values can be obtained

from experiment in the form of the ratio between two

impedance values taken at different values of w .

We observed above that for cases S and SW (h /d �/1)

the simple relationship k̄o� k̄��0:67 d /h applies. The

results of Fig. 19 (which include a point for d�/300 mm

to emphasise the dependence on d ), indicate that the

same relationship applies for h /d values approaching 1.

The fact that Eq. (17) still applies in case O is a

surprisingly simple result, which, as yet, appears to

have no theoretical explanation. This result unfortu-

nately does not give a method for determining h ,

however, since the ratio of two values of k̄o� k̄� is

insensitive to h .

Fig. 20 shows the individual values of k̄� and k̄o;
normalised with respect to their values at w�/ 200 mm by

calculating the ratios k̄�=k̄�;200; etc. The upper plots

show the normalised values plotted for various h as a

function of w . The lower plots show the same quantities

plotted as functions of h for various w . We notice that,

Fig. 15. Nyquist plot of complex cell constants from finite element

simulation results for cases W, O and the transition between them h200

m, d200 m. Points are shown at three points per decade from the

maximum frequency of 105 rad s1.

Fig. 16. Magnification of high frequency part of Nyquist plot in Fig.

15, showing finite element simulation results (symbols) and best-fit

straight lines (solid lines) for cases W, O and the transition between

them (h�/200 mm, d�/200 mm).

Fig. 17. Finite element simulation results for gradient �dK̄ƒ=dK̄ ? at

high frequency as a function of h /d for various w /d (d�/200 mm).
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though the dependence of k̄o=k̄o;200; on h is rather weak,

k̄�=k̄�;200 displays a stronger dependence on h , which

may be exploited in two ways. First, the lower plot could

be used to obtain the value of h for a given w from

k̄�=k̄�;200: Perhaps a more robust method, however, is

to measure k̄�=k̄�;200 for a range of different values of w

and then match the experimental curve against the

appropriate simulation curve in the upper right hand

plot of Fig. 20. Using this latter method, a good fit

would confirm that the theory and experiment are

consistent.

The method suggested above depends on obtaining an

accurate value of k̄� by extrapolation of the results to

the high frequency limit. Again we must be aware that

dielectric, or stray capacitances may be problematic,

although not so severely as in the method that uses the

high frequency limit of the gradient. To eliminate the

high frequency problem altogether, it would be neces-

sary to use the values of k̄o=k̄o;200 which, as mentioned

above, display a weak dependence on h . Alternatively,

we could investigate case E, where it might be expected

that k̄o=k̄o;200 would approach k̄�=k̄�;200: This approach

may be the subject of further simulation work (if

appropriate) after an experimental evaluation of cases

S to O.

Fig. 18. Dependence of k̄� and k̄o on w from finite element simulation results for various values of h (d�/200 mm).

Fig. 19. Finite element simulation results showing the dependence of

the quantity k̄o�k̄� on d /h for various w (d�/200 mm). (Note: a point

for d�/300 mm has been included to emphasise the dependence on the

quantity h /d rather than simply h .)

Fig. 20. Finite element simulation results for normalised k̄� and k̄o as a function of h for various values of w (lower plots), (d�/200 mm). The upper

plots show the same quantities as a function of w for various values of h (d�/200 mm) together with fitted calibration curves for experimental

determination of h .
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5. Conclusions

The finite element simulation technique has been

applied to the calculation of the complex impedances

of planar cells for a wide range of cell geometries. For all

cell geometries where suitable theoretical models exist,

the finite element calculations gave consistent results.

For many cell geometries of practical interest no suitable

theoretical models exist, and it is in these cases that the

finite element method has proved to be particularly

valuable.

Our analysis has further shown that, as far as planar

electrode cells are concerned, the notion of a complex

cell constant is a particularly useful one as it allows the

impedance of the cell to be described in a fashion that is

independent of the conductivity. In all the cases

examined, the Nyquist plot of the complex cell constant

may be conveniently characterised by the high and low

frequency limits k� and ko of the real part of the cell

constant, and the gradient of the line which joins the

high frequency intercept and the transition between high

and low frequency behaviour.

The values of k� and the gradient were both found to

be particularly sensitive to the cell height, i.e. the

polymer film thickness. Consequently, cell designs where

it is possible to measure both the height of the polymer

region and the polymer conductivity by carrying out

suitably designed experiments have been highlighted. In

these cases, the optimal measurement parameters have

also been identified.
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