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Abstract

We tilustrate how a range of fluid and solid mechanics problems rel-
evant to the human eye have been combined in a continuing Ph.D
study. Anterior chamber flow, the solid mechanics of tonometry,
the effects of scleral buckle surgery and the mechanics of retinal
detachment are all discussed. Finally, a number of other eye prob-
lems that are amenable to a theoretical mechanics treatment are
proposed.

Introduction

he main objective of this article is to illustrate one of the
Tareas that typifies the sort of interdisciplinary research that

many of today’s mathematics Ph.ID students are engaged
in. When confronted with the fact that a three-year Ph.D. is
taking place on “The Mathematics of Eyes”, many people’s first
reaction is that the work must either have something to do with
optimising the manufacture of spectacles, or perhaps consist of
analysing the optics of the human eye. Both these guesses are
wrong and, as we hope to illustrate below, understanding many
of the functions and possible defects of the human eye turns out
to be a matter of applying traditional theoretical fluid and solid
mechanics.

As the reader will gather from the descriptions below, some of
the problems that are discussed should still be regarded partially
as “work in progress”. This accurately reflects one of the key fea-
tures of many interdisciplinary problems, namely that they can
never really be regarded as being “solved” Typically, whenever
headway is made with the original problem, new questions are
prompted and new complicating effects are introduced.

Of necessity, many of the clinical and mathematical details of
the problems that are discussed below have had to be omitted.
Our aim is more to provide the reader with an example of the sort
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of ¢ross-disciplinary research that is now becoming not oaly
desirable, but essential at the mathematics/life sciences interface.
In order to understand this article some basic knowledge of the
eye and its mair mechanisms is necessary. Figure 1 shows the
most important regions and components of a normal human eye;
for further information, the reader is referred to [3], which con-
tains a wealth of detailed information, and (for the non-
squeamish) [8] which contains excellent colour pictures of a vast
range of abnormal eye conditions

Flow in the anterior chamber

The anterior chamber (AC) of the eye comprises the region
between the iris and the pupil aperture, and the inner surface of
thecornea. Aqueous humour (a fluid with very similar properties
to water that is usually referred to sitaply as “aqueouns”) flows
from the ciliary body past the front of the lens and behind the
back of the iris, through the pupil aperture and into the AC.
Eventually, the aqueous in the AC exits through the drainage
angle via the trabecular meshwork into the canal of Schlemm
before flowing away.

It has long been agreed amongst ophthaimologists that non-
trivial fluid flow patterns may be present in the AC. Under
normal conditions the aqueous flow is essentially invisible, but if
the flow is “seeded” with marker particles, a circulating flow is
often observed This flow appears to have mainly vertical stream-
lines, falls at the front of the chamber and rises at the tear. In
some eye conditions such “marker particles” are naturally
present. For example, a blow in the eye from a squash ball can
lead to the presence of red blood cells in the AC, infection can
lead to the presence of white blood cells, and a number of tempo-
rary and hereditary conditions can seed the agueous with
pigment particles from the back surface of the iris.

What causes these flows? It has long been conjectured that,
since the temperature at the back of the AC is close to normal
body temperature (37°C) and (at least the outer face of) the
cornea is at ambient temperature (typically around 10-20°C
colder), the flow is caused by buoyancy effects. The fact that the
ACis “long and thin” and a typical flow speed is small makes this
problem an ideal one for the application of thin-layer lubrication
theory Under the assumptions that (a) the flow through the pupil
aperture is small compared to that produced by buoyancy effcts,
(b) the aspect ratio e = i, / L (where &, is a typical corneal height
and L is a typical AC diameter) is small, (c) the buoyancy may be
modelled using the standard Boussinesq assumption and (d) the
non-dimensional parameters &’Reand RePre’ (where
Re=LU/v, L and U being 2 typical length and speed respec-
tively and v the kinematic viscosity of the aqueous, and
Pr=pgve, / k where p, is the density of the aqueous at tempera-
ture 7, and ¢, and k are respectively the specific heat and thermal
conductivity of the aqueous) are small, the (dimensional) leading
order equations are
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T temperature, z is the coordinate normal to the iris and x and v
are the coordinates in the plane of the iris, the aqueous velocity is
g = (u,v,w), gis the acceleration due to gravity, c.is the coefficient
of linear thermal expansion of the agueous and subscripts
denote differentiation. In the simplest case, (1}(2) may easily be
solved to yield
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The flow is thus essentially two-dimensional: typical streamlines
are shown in the lefi-hand diagram. of figure 3. When realistic
parameters are used, we find that the flow takes about 18 seconds
to perform one complete circuit of the AC.

The fluid flow is thus determined, but what of the aforemen-
tioned blood cells or pigment particles that may be present in the
flow? From a medical point of view, it is crucial to know what
influence the flow has on the final resting place of any particles
that may be present This is because an agglomeration of red
blood cells can cause a hyphema to form, white blood cells can
clurnp together to form keratic precipitates that ultimately may
form a hypopyon, and pigment particles may lead to the forma-
tion of a Kiukenburg spindle (see figure 2). Bach of these
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Figure 2: (Left) Schenratic diagrams of a hyphema, a Krukenhurg spindle, keratic precipitates and a hypopyon. [Right) Hyphemra prediction from anterior
’ chiamber flow model

conditions may block the trabecular meshwork, Ieading to a
potentially dangerous increase in AC pressure

Now that the flow is known, it is relatively easy 1o include the
effects of particiesin the analysis ‘We simply assume that the par-
ticles obey a convection-diffusion equation with boundary con-
ditions that reflect their nature (white blood cells tend to be sticky
and adhere to each other; red blood cells do not). The solution of
the equation for the particles is a rontine numerical matier and
allows hyphema, hypopyon and Krukenburg spindle predictions
to be made. The right-hand diagram of figure 2 shows model pre-
dictions of a hyphema, the greyscale contours indicating red
blood cell concentration. Using this model, many practical pre-
dictions may be made: for example, if even only a few percent of
particles cannot leave via the trabecufar meshwork then some
sort of problem is almost certain to occur One may also show
that a hyphema of a certain size may be dissipated by applying 4
cold patch to the eye to increase the temperature difference and
therefore the strength of the buoyancy-driven flow.

Finally, the problem may be studied when flow through the
pupil aperture becomes important. In the absence of such flow,
the streamiines are essentially two-dimensional, as shown in the
left-hand diagram of figure 3. When the flow through the pupil
aperture is included, however, a much more compiicated picture
emerges. The right-hand diagram of figure 3 shows a perspective
picture of the flow, and, though fully three-dimensional flows are
notoriously hard to display on a printed page, gives some idea of
the highly developed topology of the flow

For full details of this work and a discussion of many other
aspects of AC flow, see [2].

The mathematics of tonometry
If you have ever had to visit the eye unit of a hospital for treat-
ment, then you will know that almost invariably the consultant
begins your examination by measuring your intraocular pressure
(IOP). Anormal IOP lies in the range 12-20 mmHg (the units are
not 81, but are always used by ophthaimologists; lmmHg =
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Figure 3: (Lefi] Flow streamlines {seen from the side of the eyel when ne pupil aperture flow is present. [Right} Perspective view of three-dimensional flow field
when flow through the pupil aperture is non-negligible

133.322 Pascals). The pressure inside a normal eye is therefore
about 1.02 atmospheres An abnormally high IOP of about 25
mmHg or greater indicates the presence of glaucoma, a sign that
something is wrong: an IOP of 50mm or above normally leads
fairly rapidly to permanent blindness Two sorts of glancoma are
identified: in angle-closure glaucoma the iris is pushed againstthe
surface of the corneal/scleral junction. This blocks the canal of
Schiemm, the main out flow route for aqueous The consequent
rise in IOP is rapid and painful, In open-angle glaucoma either a
slowly-increasing aqueous production rate or a developing flow
resistance in the aqueous outflow pathway causes a slow rise in
IOP, which may nevertheless still lead to blindness.

Measurements of a patient’s IOP are so routinely required that
a simple, non-traumatic and non-invasive way of taking the nec-
essary reading must be used. Although many different instru-
ments may be employed (full descriptions are given in [3D, the
Goldmann applanation tonometer (and its hand-held relatives
the Clement-Clark Perkins or Kowa tonometer) is generally
regarded as being one the most accurate and reliable devices. In
crude terms, a Goldmann tonometer resembles a hammer with a
sprung handle, After a topical anaesthetic has been used to numb
the eye (this stings very badly for about one second — such a short
time that afterwards you wonder whether it ever really stung at
2ll) the “hammer head” of the tonometer is used to compress the
AC until a given surface area 4 of the cornea is attened
(“applanated”). To give a final IOP reading, the “Imbert-Fick”
principle ([4], [7]) is now invoked. This states that the applied
tonometer force W is related to the IOP P, by

W =Pppd, 3)

where W is measured in units of 0 1 of a gram force (so that a
force of about 1 6g will be required for applanation in a normal
person), Py, s measured in mmHg and 4 = 7.35mm’ (so that the
diameter of the applanated region is 3 06rmm)
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Why does this work? The honest answer is that nobody really
knows, The Imbert-Fick principle was established over a century
ago, and is not the result of any detailed mathematical calcula-
tion ar engineering principle. The particular units used in (3) are
obviously the resuit of some “correlation” process that has been
refined over the years, but still begs a number of questions’ over
what range of IOPs is (3) valid? How accurate is it? What limita-
tions does it have? (see, for example [11]) Finally, and most
importantly, does (3) still apply when exceptional circumstances
pertain? (see, for example the section on scleral buckles below).

The problem is an obvious candidate for mathematical model-
ling: we assume that the eye is a linearly elastic hollow sphere and
attempt to determine the relationship between the applanating
force and the internal pressure. The equations of equilibrium that

Figure 4: The effect of tonomelry on the inner and outer walls of the eye
{broken line: undeformed inner and outer eye surfaces)




must be solved for the stresses &, are, in the obvious spherical
polar coordinates (, 8, @),
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In (4) and (5), it has been assumed that the problem is
axisymmetric (so that everything is independent of the azimuthal
angle ¢ and o, = o, = 0), while the quantities # and F, denote
the equilibrating forces that must be applied to resist the
tonometer pressiuze.

Although the existence of an Airy stress function for linear
elastic problems in rectangular Cartesian or cylindrical polar co-
ordinates is relatively well-known (see, for example [10]), it
appears to be much less commonly appreciated that 2 related
“Love stress function™ exists for three-dimensional axisymmetric
elasticity problems. Briefly, if % is an arbitrary biharmonic func-
tion, then the homogeneous forms of (4) and (5) are identically
satisfied if
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where £ and v are Young’s modulus and Poisson’s ratio respec-
tively and the other displacement 4, and the remaining non-zero
SUIEsses G, O 5ando,, are given by similarly horrible expres-
sions to (6) and (7) (for full details, see [9]) The general form of a
biharmonic function in spherical polars that we now Tequire is
given by

18) = S (A By C £ DS P (c0s 8. (8)
n=0

where 4., B,, C, and D, are arbitrary constants and 2, (cos 8) is
the nth Legendre polynomial We now have to decide what
boundary conditions must be applied. For simplicity, we shall
assume here that on the inner wall of the eye » = » we have
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0, {0,0)==p,—Dprop, 0u(5,0)=0 (where p, denotes
atmospheric pressure), while on the eye surface r = ¢ we have
0,(a,8) =-G(0), 6,(a,8)=0, where, for the tonometer
problem,

G(B):{pm-i-f( (0<8<w)

P (w=8<m)

Here o is the tonometer head halflangle and X is the stress
exerted by the tonometer on the eye. It now “only remains” to
substitute (8) into the definitions for the stresses, and apply the
boundary conditions to determine the unknown coefficients.
Needless to say, this proves to be a long job. Use of a symbolic
algebra program such as MAPLE simplifies matters greatly, and
shows eventually, that, though the equations for 4, B,, C,and D,
are coupled, they can be solved without too much trouble to
recover the solution Figure 4 shows a typical displacement
profile of the inmer and outer walls of the eye, and it may be
shown that for IOPs of up to about 20 mmHg the Imbert-Fick
principle is indeed valid, though for higher IOPs it becomes
increasingly unreliable.

Of course, one may argue that the wrong problem has been
solved Since the tonometer is designed to function by producing
the correct degree of applanation, it seems much more logical to
specify the normal displacement under the tonometer rather
than the stress. It turns out that this mixed boundary value
problem is a lot more interesting from a mathematical point of
view, and leads to coupled integral equations for the unknown
stresses and displacements. These may also be solved, though
space does not permit a full explanation of the methods that must
be employed.

The modelling of scleral buckles

Retinal detachment (RD) is a time-critical eye emergency that
typically affects about 1 in 10-20 thousand of the popuiation and
usually presents in patients aged 40-70. The condition occurs
when the retina (the light-sensitive component of the eye)
detaches from the choroid. Initial symptoms commonly include a
“flashing light” sensation, followed by a shadow in the peripheral
vision field If ignored, this may spread until complete blindness
rapidly ensues.

RD was first recognised in the early 18th century by de Saint-
Yves, but clinical diagnosis was impossible until the invention of
the ophthalmoscope in 1851 The condition still condemned the

Figure 5: {Left} Scleral buckling of an eye with rhegmatagenous retinal detachment. [Right] Displacements calculated using mathematical medel {broken lines

undeformed inner and outer eye surfaces)
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sufferer to certain blindness until the 1920s when Jules Gonin,
MD, pioneered the first successful treatment in Switzerland

The most common modern way to treat RD is by scleral buck-
ling surgery. Under general or local anaesthetic, the surgeon
stitches a scleral buckle to the outside of the eye (see figure 5)
The operation is normally quick and simple and no overnight
hospitalisation is required; the buckle normally remains perma-
nently in place.

The scleral buckle “buckles” the sclera towards the middle of
the eye. This decreases the traction on the retina, allowing retinal
tears to setile against the wall of the eye, and prevents fluid from
entering and worsening the detachment. Simultaneously, the
retina may be scarred using cryopexy (extreme cold), laser light
(photocoagulation) or heat (diathermy) to hold it in place until it
reattaches to the choroid.

Scleral buckling enjoys an 80-90% success rate for
rhegmatogenous detachments (i.e. those caused by a retinal hole,
break, or tear), but is rarely successful for “traction” detach-
ments caused by the tugging of scar tissue.

Once the mathematical machinery for the toncmetry problem
of the previous Section has been set up, a number of other medi-
cally important problems related to scleral buckles may easily be
tackled For example-

* Scleral buckling distorts the shape of the eye: what effect does
this have upon the focal length?

» How accurate is a Goldmann tonometer when a scleral buckle
is present? Should any changes to the Imbert-Fick principle be
made?

* One difficulty with buckling surgery is that choroidal detach-
ments may develop one or two days after surgery, and increase
in size. Can the seriousness of a choroidal detachment be pre-
dicted from the details of the buckling process?

Space constraints preclude all but the briefest discussion of these
questions, but itis clear that the focal length of a buckled eyemay
be determined simply by changing the boundary conditions (3)
to

Dt (0=8<mn/2—q)
G(B)=4p,+S (R/2-0<0<n/2+a)
P (Ri2+0<0=1)

where § is the pressure exerted by the scleral buckle The right-
hand diagram of figure (5) shows typical model results for buck-
ling displacement: the model may also be used to relate scleral
buckle force to change in focal length.

The mechanics of retinal detachment

A treatment for RD has been discussed in the previous Section; it
Is interesting to ask, however, exactly how and why RD happens
in the first place. Like cancer, RD has many causes, mahy cures
and its treatment contains many possible pitfails. One common
cause of the condition, however, is the tendency of the vitreous
humour near to the centre of the posterior segment of the eye to
solidify as a patient ages. This solidification can drag the retina
away from the choroid. A small tear forms, mobile vitreous
humour flows inte the tear from the extremities of the posterior
segment and the retina is peeled away from the choroid like a strip
of sticky tape being pulled off.

A lubrication theory fluid dynamics model may be constructed
to explain the process of RD and subsequent fluid entry Tn its

Mathematics TODAY FEBRUARY 2003 24

simplest form, the displacement A(x, £} of the retina can be shown
to satisfy the fourth-order PDE

3
Pl R ©)
! u 3 fned

where subscripts denote partial derivatives, ¢ denotes time, x the
distance along the choroid, and ¢ and x denote respectively the
“surface tension” of the retina and the dynamic viscosity of the
liquid vitreous. Serious mathematical complications immediately
present themselves: to enable the detachment point to move
something sensible must be said about the contact angle. This
notoriously difficult matter may be side-stepped by using the
engineering correlation known as “Tanner’s law” which states
that the contact angle £, at the detachment point is a {(known)
power of the speed of the contact point. Uﬁfortunately, it is easy
to show that when this condition is imposed, (9) has no solution]
A good deal of further technical analysis is required before any
conclusions on the causes of R may be drawn {for fuller details,
see [6])

Up to our eyeballs in problems....
The three years of a standard Ph.D. studentship are nowhere
near long enough to investigate the host of theoretical mechanics
problems that are associated with eye conditions and functions.
Many other interesting modelling problems have recently pre-
sented themselves to us including:

* One popular method for repairing RDs involves © spot
welding” the retina to the choroid using a small laser The
power and duration of the laser pulse that is required to give
secure fixing with minimal scarring are well known from
experimental studies. If a laser with a much larger beam radius
is used, how much power is now required and how is the laser
energy distributed in the beam?

» Another popular treatment for RD consists of removing the
vitreous humour from the posterior segment {vitrectorny) and
replacing it with saline and a gas bubble. The bubble
“tamponades” the retina to the choroid until it can reattach
itself. Increasing numbers of patients fly to the nearest eye unit
on commercial flights where the ambient cabin pressure is
about 0 8 Atm, but some simple gas dynamics calculations
show that if they y home when the gas bubble is still present, a
rapid decrease in cabin pressure may cause severe glaucoma.
Luckily, a simple ordinary differential equation model may be
constructed to predict when air travel is safe.

+ How big do blood or pigment particles have to be to block the
trabecular meshwork through which the AC drains? (Thisisa
porous medium flow problem: if the particles are too large
they cannot enter the meshwork, and if they are too small they
will pass through it.) More simply, how does flow through the
trabecular meshwork take place? (Pilocarpine, a drug used to
lower IOP, forces the ciliary muscles to contract and mechani-
cally stretches the trabecular meshwork, increasing the
through flow of agueous.)

* When a patient’s lenses become cloudy (cataracts) they are sur-
gically removed and false lenses made of plastic or silicone are
substituted Visually, these function well, but how do they
perform mechanically when subjected to high accelerations?
(The original form of this question concerned fighter pilots,
who may have {o use an ejector seat in an emergency )




» How does the tear film rupture in “dry eye” patients? (Dry eye
is extremely uncomfortable- the reader is challenged to try not
blinking for 30 seconds.) It turns out that the process involves a
delicate balance between gravity, surface tension and evapora-
tion. Some two-dimensional asymptotic and numerical calcu-
lations {for full details see [1]) give good agreement with
observed film rupture times, though it is clear that a fully three-
dimensional study will eventually be required

When a human cornea is damaged, the cells may regrow i a
spiral shape. This is known as “hurricane™ or “vortex”
keratopathy Why does this happen? Some published studies
have suggested that the naturally-occurring potential differ-
ence between the front and the back of the eye drives a mag-
netic field which affects the growth pattern of the iron-doped
corneal cells. Although it may easily be shown that the poten-
tial difference in question (about 6 mV) is far too small to lead
to such effects, hurricane keratosis is still unexplained and
awaits the development of a two-dimensional cell transport

the role of a single bodily organ, and as, usual, the more one
analyses the eye the more one wonders at the fact that the vast
majerity of eyes work almost faultlessly for so long and that
evolution has provided us with such a cleverly-designed ocular
device Though during the course of 2 Ph.I) study we have been
able to consider a range of fascinating theoretical mechanics
problems, it is evident that much work remains to be done 3
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