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CRACK PROPAGATION MODELS FOR ROCK FRACTURE IN A
GEOTHERMAL ENERGY RESERVOIR”

ALISTAIR D FITT!, AMANDA D KELLY}, AND COLIN P PLEASE!

Abstract. The propagation of a one-dimensional, fluid-filled crack in a hot dry rock geothermal
energy reservoir (HDRGER) is discussed In previous studies a mumber of different relationships
between the normal stress on the crack, the fluid pressure, and the crack height (so-called crack
laws) have been used, as have different “flow laws” to determine the relationship between flow rate
and crack geometry. Here it is shown that the choice of submodel may have profound implications
for the mathematical structure of the problem. In particular, two crack laws {a linear law and a
hyperbolic law) are considered 2s well as two flow laws (a cubic law and a linear law) The model
contains a dimensionless parameter that measures the relative importance of stresses due to local
deformation of asperities and the long-range deformation of the crack surface The caseis considered
where the former is the dominant mechanism. A perturbation analysis is performed, and it is found
that for. some combinations of laws a strained-coordinate analysis is required, whilst for others a
matched asymptotic approach is needed. In the latter case the problem may be reduced to that of
solving a linear, nonhomogeneous singular integrodifferential equation to determine the behaviour in
the boundary layer. This problem is solved, and some conclusions are drawn regarding the relevance
of various laws to flow in HDRGERs.

Key words. hydrofracture, geothermal energy, nonlinear diffusion, singular integrodifferential
equations
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1. Introduction. Hot dry rock geothermal energy reservoirs {HDRGERs) gen-
erally consist of huge networks of interconnected cracks in rock where water is pumped
into the network from one borehole and extracted at another. In its natural state,
the rock contains cracks that allow only a very small flow of water In order to en-
hance the flow, either water or a viscous gel is pumped at high pressure from an open
segment of a borehole into the rock. In this way the reservoir is stimulated Typi-
calty, this high-pressure flow leaves the borehole in two opposite directions so that,
until the crack is very much longer than the open segment of the borehole in use, a
one-dimensional model of a single crack is appropriate The current study describes
such a model.

The heat transfer processes that take place within the reservoir are assumed to
exert negligible influences on the fluid-rock interaction; this is a reasonable assump-
tion if the short-term motion of the crack is to be considered, since any shrinkage
of the rock due to cooling may be assumed to occur over time periods that greatly
exceed the fluid residence time

The behaviour of a preexisting, one-dimensional crack in a linearly elastic medi-
um is examined. The crack propagates due to loading by an incompressible, viscous
Newtonian fluid. To develop a model for such a process we first consider the separate
fluid flow and solid motion problems. To close the model, a crack law is employed to
couple the fluid and solid motions

Conventional crack law models assume that the wall elastic normal stress is sup-
ported entirely by the wall fluid pressure. Such a crack is referred to as being open
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(as opposed to partially closed) This is a reasonable assumption for most applica-
tions of crack propagation (for example, oil recovery or magma-driven propagation
as discussed in Spence and Turcotte [17]). In an HDRGER, however, the fluid pres-
sure seldom becomes large enough to completely separate the crack surfaces This
is because the elastic shear stress on the crack walls due to in-situ stresses is suf-
ficient to cause the surfaces to slide over each other well before the crack is open
{Pine and Batchelor [13]) This in turn opens up a network of cracks into which the
fluid may flow. Ii is reasonable therefore to assume that the crack surfaces touch
and, therefore, that the elastic normal stress is supported by both the fluid pressure
and local deformations of asperities in the crack. Modelling the sliding of the crack
surfaces over each other is difficult and will not be considered further in the current
study.

As the fluid pressure changes, there must be corresponding alterations in both
the deformation of the asperities and the elastic normal stress in the rock. The crucial
parameter in the current model measures the relative importance of these two effects.
The case where the redistribution of normal stresses is the dominant mechanism was
discussed by Kelly and Please [7] In the current study, however, we eonsider the case
where the more localised property of elastic deformation of asperities is assumed to
be the preferential pressure-balancing term. Evidence suggests that physically, it is
this case that is more likely to occur in an HDRGER.

Section 2 of the current study outlines a mathematical model for crack propaga-
tion in an HDRGER, giving details of crack and flow law submodels that have been
considered before. In §3 we consider the combination of a Reynolds flow law and a
hyperbolic crack law, showing that strained coordinates are required to determine a
spatially uniform solution. Section 4 considers the case of a Reynolds flow law and a
linear crack law, and we observe that the solution has a nonuniform expansion. The
required method of solution for this case is illustrated in § 5 by the qualitatively simi-
lar but algebraically easier combination of a linear flow flow and a linear crack law. It
transpires that the behaviour in the boundary layer is determined by a linear singular
integrodifferential equation, and this is solved both asymptotically and numerically,
thereby fully determining the boundary layer behaviour. Finally, §6 presents some
discussion and conclusions

2. A mathematical model for crack propagation in an HDRGER. The
basic mathematical model emploved to describe the motion of a one-dimensional,
fluid-filled, partially open crack that is used in the current study is explained in detail
in [7], but for completeness the main assumptions are repeated below Cartesian
coordinates are used {see Fig. 1), with the direction x assumed to lie along the length
of the crack and y normal to the crack. It is assumed that the crack is thin (its length
is large compared to its height) and hence that the variables describing the crack are
independent of y. The crack height is denoted by h{z.t), the elastic normal stress
along the walls by ¢y,{z,t), and the pressure of the fluid within the crack by p(z.¢)
For simplicity we assume that the crack is symmetrical about z = 0 and denote its
half-length by £(f).

It was shown by Spence and Sharp {16] that for a given crack height h(x,t) the
elasticity problem arising from the plane strain elastic contact equations (see, for
example, [12]} could be solved to yield

O - G ][°° Bh(s,t) ds

t)— o = ;
Tyy(Z;t) — Oy oam(l-v) J o 05 s—z
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Fic 1. Nomenclature and coordinates for the idealised erack.

where the bar on the integral sign denotes the Cauchy principal value, oy denotes
the mormal stress at infinity within the rock, and G and v are, respectively, the shear
modulus and Poisson's ratio of the rock. We refer to (1) as the elasticity equation;
physically it describes the normal surface stresses resulting from the deformation of
the interface of the elastic material from a planar state. Further development of the
model relies upon providing two more equations relating the pressure, crack height.
and normal stress Usually, one of these equations effectively expresses conservation
of mass (a flow law), whilst the other relates the normal stress and pressure to the
crack height (the crack law) Different flow and crack laws may be used in various
combinations, and the purpose of this study is to discuss the effects that different
such combinations may have on the mathematical properties of the model.

2.1. Flow law submodels. In this study two different flow models are consid-
ered For the first of these models, it is assumed simply that the fluid flow within
the crack is determined by standard lubrication theory. The relationship between the
crack height and the fluid pressure is therefore given by Reynolds’ equation (see. for
exarmnple, [10}):

1 .

2) he = 355 (W*pe),
where u is the dynamic viscosity of the fluid in the crack. We refer to this as the
Reynolds flow law Although this is an appealing flow law to use, it relies on the
assumption that the reduced Reynolds’ number 62Re is small, where é. denotes the
aspect ratio of the crack. Typically in an HDRGER the cracks are not smooth but
possess many asperities so that the local geometry is complicated. This geometry can
change as the crack height varies. Considerable discussion (see, for example, [19]) has
therefore taken place regarding the validity of (2) for even mildly tortuouns cracks.

Although the Reynolds flow law has been used extensively (see, for example, [16],
117}, and many others), its possible limitations have led some authors to consider flow
laws that are similar to (2) but where the term h® is replaced by a term a,h", where
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the constants n (dimensionless) and a, (dimensions length!®~™) are to be regarded
as experimentally fitted. Note that from (2), we have a3 = 1 Such changes from
this cubic law are due to the effects of tortuosity, contact area, and irreducible flow.
Evidently the simplest case for analysis is given by the choice n = 1, and we refer
to this as the linear flow law A full discussion of flow laws that are derived by
empirically fitting to experimental data is given in the review article by Cook [3].
The data suggests that for large crack apertures a flow exponent n greatly in excess
of 3 is appropriate, whilst for small apertures the exponent is less than 3. Since the
main focus of the current work is the small-aperture crack, we consider both the cases
n =1 and n = 3 below

2.2. Crack law submodels. One approach to modelling the stress within the
crack has been to assume that that the normal stress at the crack wall is supported
entirely by the fluid pressure, so that

Tyy(z,t) = —p(z.t)

(see, for example, [16], [17)). It is known, however, that in many HDRGERs the
fluid pressure is insufficient to support the normal elastic stress and the total load is
distributed between the fluid pressure and the local deformation of touching asperities
A Rl review of the models used to fit the mechanical forces acting at an interface
for mated joints and partial contact joints may be found in Cook [3] In such models
the local deformation of the asperities is assumed to be a function of the effective
stress oy, -+ p. In order to link such crack laws to the flow laws discussed above, it Is
traditional to define the quantities Amax and Amin, which are often referred to in the
literature as, respectively. the maximum and minimum crack heights. For b > Apax
the erack is considered to be fully open with no touching asperities and the standard
(zero effective stress) crack law (as used, for example, in [17}) applies The minimum
crack height A, is nonzero, since even at very large compressive normal stresses
there will always be some residual aperture.

Two popular choices of crack law, for cases where the effective stress is nonzero,
are known as the linear and hyperbolic crack laws and are discussed below. The linear
crack law asserts that the crack height and the effective pressure oy, (%, t) +p(x.t) are
related by a piecewise linear law Pine and Cundall [14] proposed such a law in the
specific form

2arunz ™ Pamin
3) b= {hmax = (oyy + p)(}—m——-——) (or <oy +p<0),
Panin (Oyy +P< Ti).

where og, usually termed the reference stress, is the least negative effective stress at
which A = hyy

The hyperbolic crack law is generally considered to be a more realistic deformation
model for joints in partial contact It was originally proposed by Goodman [4] and
discussed further by Bandis, Lumsden, and Barton [1] and Murphy et al. [11], and
assumes that the normal stress, pressure, and crack height are related by

k(hmax B h)
(h - hmin)
Here the constant & (which has dimensions of stress) is experimentally determined;

values of —107 Pa for a fracture at a depth of 2 km are typical (Pine and Batchelor

[13).

{4) Tyy + P =
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At the large stresses encountered in the vast majority of HDRGERS, fpax is
typically several orders of magnitude greater than hyi, We therefore assume from
now on that Ami, 18 5o small that it may be taken to be zero. The practical consequence
of this approximation is that the crack profiles that will be caleulated possess compact
support. If Anin is taken to be small but nonzero, then the only effect on the solutions
is to add an exponentially small contribution that does not possess compact support
{see, for example, King and Please [9])

2.3. Nondimensional version of the models. Below we will consider three
combinations of the various laws, showing that in each case there are profound dif-
ferences in the mathematical structure of the problem These combinations will be
denoted by the nomenclature

RH: Revnolds fiow law, hyperbolic crack law;

RL: Reynolds flow law, linear crack law;

LL: linear flow law, linear crack law.

We begin by nondirensionalizing the model for the motion of the crack Denoting
a typical crack length by L and a typical fluid pressure by po, we set

Ghmax -

h = hmaxh, 2=L& p=po—I(0op +po)B, Oy =0y + Ll - ) W

and determine the relevant timescale according to which combination of laws we are
using by writing
t=Tt
with
T ~12uL?

=S 3 .
"'Jh‘max

where w has the values a,0p/h2,,, (Minear flow law, linear crack law}, or (Reynolds
flow law, linear crack law), and k (Reynolds flow law, hyperbolic crack law).

In each case, the pressure and normal stress may easily be eliminated to give a
single nonlinear singular integrodifferential equation for the crack height h(z,%). Drop-
ping the bars for convenience, we find that for the three cases the relevant equations
are

8/ [ 0k ds —Gh
) _ _ 3— ar - max
(5) RH:  hy= [hhnc eh 393( 5 S_I>Lv where €= oI - )L’
8/ [™ dh ds =Gh
. B 3 B 3 0 oh - Tax
(6)RL- by = [h o = e 3$( oo Os5— :B)L’ where ¢ 2mop(l — )L
8 & 6h dS _Ghma.x
(1) LL he= [hh‘“ —ehax( o Oss —m)]i where ¢ = rop(l— V)L

In each case, the equation applies when 0 < h < 1. Regions in which A is iden-
tically zero may occur, whilst in regions where b is greater than unity, the equations
and analysis of, for example, [16] are appropriate Henceforth we shall only consider
cases in which h remains less than one.

Evidently for each of these models the order of magnitude of ¢ is a key factor in de-
termining the behaviour of solutions In each case, € is a ratio of shear modulus/crack
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length to reference stress/maximum crack displacement, and its value determines how
changes in the fluid pressure are compensated for. Large values of € imply that changes
in the fluid pressure are balanced by a global redistribution of stresses along the crack,
whilst small values of ¢ imply that such pressure changes are accommodated by a lo-
cal deformation of asperities. In typical HDRGERSs there are circumstances when ¢ is
large, and this limiting case has been discussed in [7]. More commonly (for example,
for cracks of length 1 m at a depth of 2 km) ¢ is smail (typically of the order 1/10 or
1/100), and it is the small-e case which we shall consider below. It will transpire that
the solutions to these various cases have different structures. In particular, in the
asymptotic limit of small € some cases will possess regular expansions, whilst others
will require more careful analysis to determine a spatially uniformly valid first order
solution

It should be noted that, for arbitrary values of € these equations possess similarity
solutions corresponding to particular boundary and initial data. Rather than numer-
ically determining these somewhat restrictive solutions, we prefer to exploit the small
parameter ¢ in the problem in order to determine the key properties of the solution
structure.

2.4. Initial and boundary conditions. The modelling formulation is com-
pleted by the spécification of the necessary initial and boundary conditions. Physi-
cally, the problem to be examined concerns the large-time spreading of a fixed mass of
fluid injected initially into a short section of a crack. We anticipate that, as in many
other diffusion-type processes, the large-time behaviour will not be sensitive to the
precise nature of the initial data. At these large times, this initial data manifests itself
via a matching condition; we will assume that this matching is equivalent to imposing
a point-source, Barenblatt-type [2} condition upon the problem. For this reason, we
will not disallow initial data that violates h < 1. In any case, we anticipate that the
asymptotic expansions will prove to be nonuniform as ¢ — 0. Later in the text, some
further comments will be made concerning the relationship between the solution and
the initial data.

We insist that the crack retains compact support so that k(z,t) > 0 for z < £(%),
and zero otherwise. Under the assumption that no mass enters the crack from infinity,
the initial condition therefore reflects the fact that the mass of fluid in the crack
remains constant and initially the crack length tends to zero.

By symmetry we have h.(0,t) = 0, and we must also ensure that mass is conserved
at the moving boundary. The final condition comes from consideration of the stress
singularity at the crack tip. Owing to the precracked nature of HDRGERs, we assume
that this singularity has zero strength

Taking the total dimensionless mass of fluid within the crack to be unity, the
boundary conditions are

£(t)
(8) h{z,t) = {0> . Ef_(z)(t)SLwEEL . 0D =0, f_ " h(z,t)dz = 1,

and
h(z,i) = o{(£(t) — 2)/?)  as z — £(1).

The initial condition is £(f) - 0asf—0
By making obvious changes to the initial and boundary conditions given above, a
range of other, related problems (for example, a constant fux or a constant pressure
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given at z = 0} may also be analysed. In these cases, however, it is awkward to
determine even the ({1) solutions, and since the solution structure near to the crack
tips is not significantly altered we do not consider these further

3. Reynolds flow law with a hyperbolic crack law. First, we consider the
case RH. The relevant integral equation is {5) with boundary and initial conditions
(8). We begin by seeking a regular perturbation solution for small e, writing

h=hstehi++-, E€=fy+eli+- (e = 0)
The leading-order partial differential equation is
hor = (hohoe )z
and the solution is given for 0 <n < 1 by

)‘2
@ ho=—os(l=1R),  folt) = M2,
where
9\ /3 z
(10) =(3) 1w

. In order to demonstrate that a regular expansion will be appropriate for this
problem, consider how the various terms on the right hand side of (5) compete with
each other. When h is O(1), the term multiplied by the small parameter is clearly the
smaller of the two. Near the crack tips, however, where it may be anticipated that
any nonuniformities will manifest themselves, the asymptotic behaviour of the terms

is
5] = Bhy ds
~ - 3 —0 ~ — 2
hohog ~ 1 — 1, hoam(]l ) {L—mn)

oo 08 85—z

The second of these two termas is thus uniformly smaller than the first, and the stress
intensity boundary condition will automatically be satisfied at next order This re-
flects the fact that, throughout the whole crack, the dominant physical balance in the
equation remains the same We conclude that a regular expansion with coordinate
straining will suffice

The O(¢) problem is given by

LIRS {s,t) ds
_ _ 13 b ik e A
hyy = [(hﬂhl)w hy (f_e(a) ds s— E)J z’

and using h;(z,t) = t~*3H{n), we find that H satisfies the ordinary differential
equation

pX 1—
— o NH" — onH' N2 2 _ 2 _ =7
1) 1-n")H nH' + 6H 54(77 1){6’0 2+ 3n(n 1)10g(1+n)]

The general solution to this equation is given by

1 1+ 3n AP
— 2_1 el 2 _ - rUy 2 A - . 2
. H(n) = A(3n )+B(4(3n 1)1og(1_n) 5 ) +3515" (49 — 15n°)
A8 9 . 5 1—1
L (R - 1 —n? T0n° — — 151° —
+ 5450 [(8 24n*) log(1 — 0"} + (70n° — 157 — 159 )1og(1+n)],
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where A and B are arbitrary constants, and to satisfy H, = 0 at 7= 0 we take B =0.
It remains to ensure that {12) satisfies A = 0 at z = £(t) and conserves mass; however,
expanding

2(t) = X3 + fe)y ().

it may quickly be shown that there is no choice of f(e) whick allows the O(e) part of
h to be zero at z = £(t).

A standard regular perturbation expansion having failed. we attempt to suppress
the singularities at the ends of the range by using strained coordinates. Evidently we
have a choice whether to strain the coordinaie x or £, but it may be shown that if =
is strained, then the additional term that appears in (12} is odd and must therefore
be discarded. To strain coordinates in £ we write

t=T—eg(T)
and observe that the leading-order problem is unchanged and so has solution

A T

ho(z,T) = 6’1“—1/3{1 -7, n= T8

The O(¢) problem is therefore

K3 ATV — g
grhor + bz = (hoh1)es + [g (mg (m))m} "

and with hy(z,T) = T~43H(n) we find that a similarity solution is successful, pro-
vided that ¢’ is proportional to 1/7. Using g(T") = klogT we find that H satisfies
{11) but with an additional term
A
kAQ 2_ "
(” 3)

added to the right-hand side The general solution is therefore given by the sum of
(12) and an extra term

k)\z 2 2 Z
—5(477 + (37" — 1) log(1 — 1)),

By choosing
UT) = MTY3 ey ™23, k= =

and

A 43%1log 2 — A* + 108u),

" 648

the secularities are therefore suppressed. We note also that with this choice of A and
k, it is true for any u that

Lotely
/ ho + ehide = 1+ O(e?).

—ép—efy
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A spatially uniformly valid solution, correct to O(e), is therefore given for | z |<
2(t) by

——(1-9%)+ Li\ff{ w1)+’\a —3n* + 277 + 1+ (129° — 4) log 2)
6T1/3 T3 |6 gag I+ K &
)\5
+ 7555 (37 + 9 + (1 = 7)° log(1 — ) + (37 — 9n + 4)(1 + m)° log(1 + m}] |,
where
€A
t= T— Té- logT

It will be noted that this solution contains the parameter y, which is undetermined
to this level of approximation. p may be thought of as a matching constant, and
is determined by the behaviour of the solution for small values of ¢, when the full
equation applies. Such dependency on the earlier history of the solution is often
encountered in reaction-diffusion problems (see, for example, King [8]). We note that,
as anticipated, the expansion is nonuniform as T - 0.

Typical results are shown in Fig 2, where the values p = 3 and ¢ = 1/100 were
used. The crack profile is shown for times ¢ = 1, 2, 5, 10, and 20. These results will
be compared with those for other models in §6.

6.5}

F16 2 Crack profiles for the case RH with data p= 3, e = 1/100 ot imes t =1, 2, 5, 10, 20
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4. Reynolds flow law with a linear crack law. Next we consider the case RL.
We solve the equation (8) subject to the conditions {8), using a regular perturbation
expansion of the form h = hg+¢hy +--, £ =4y +ely+ - {¢ = 0). This gives
the leading-order solution

w15 3A% 13 21173 1/5
h():f E— (1—7’] ) , EO(t)=At .

h g . 5\ /5 1 3/5
where W—At1/5: = Zé' ﬁ(%,%)

At next order we fnd that, with ky{z,t) = t~*°H(n), H satisfies

10 2 ,
(1= o}H" — FnH' + SH = 2xu(n) = A1 - 7 )v'(n),

/ 1/3r p1 a2y —2/3
where o(r)} = (%) [f1 Tj-(m:!—-q;-—?_-j:—-f)—f—du] .
- 7

The solution of this equation may be expressed as a quadrature involving v and
hypergeometric functions.

As in the previous section, we now consider whether the expansion is spatially
uniform. Near the crack tip, the two terms on the right-hand side of (6) are given
asymptotically by

e * Bhy ds Yy
Bhos ~ (1= np S W G

e U5 85—

Evidently the second term is now no longer uniformly smaller in space than the
first This indicates that there is a change in the dominant physical balance in the
equation along the crack. Close to the crack tip the dominant balance must include
the term involving the singular integral in order that ali the boundary conditions may
be satisfied. Thus a singular perturbation analysis is appropriate.

The analyses for the cases RL and LL follow similar paths. The algebra involved
in the case RL is complicated, however, by the presence of the hypergeometric func-
tions. For simplicity therefore. the general method will therefore be illustrated in the
discussion of the case LL below

5. Linear flow law with a linear crack law. Consider the case LL where (7) is
to be solved with boundary and initial conditions (8). Seeking a regular perturbation
expansion as in §3, we find that hy is given by (9) and (10)

This case is closely related to the case RL, since near to the crack tip we have

o0
hohoy ~ 1 —m, hoi( Oho _ds )Nl

Oz _mugs_s—a:

As discussed in the previous section, a singular periurbation analysis is thus appro-
priate.

To determine the behaviour over the whole region, we employ matched asymptotic
expansions We first determine the outer (i.e.. away from the crack tips) solution.
With hy(z.t) = t~2/3H(n), the O(e) equation reduces to the ordinary differential
equation

AN 2am. {147
— Yy g 2 H = - —_— 1,
(1 —n%) nH' +2H 3 3 log T
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which has the general solution

H(n) = A(z + mog(l"_”D - %—" log(l—_—ﬁ) + 2 log(1 —7°)

147 147 9
An 1-—1 2
_ 2l e/ B —
5 log(Hn) og(l—n°)
A 1 1
- 4—917 [-~2» log{l — 7) log{l — ) + dilog(—;ﬂ)

1 1
— log2log(1 ~ ) + 5 log(1 — 1) log(1 +n) + 7 [fog{l — )

1 1 2
(13) + 2 log(1 + 1) log(1 — ) — 5 llog(1 4 M — 35

where A is an arbitrary constant and the other component of the complementary
function has been discarded since it is odd. As usual, the dilogarithm function is

defined by
dilog(z) = f 1089 4
1

+ %(log 2)%|.

1-—s5
As before, we note that the expansion is not uniform as t — 0, but we do not analyse
this region.
The solution (13) is not valid near the crack tips: specifically it is of order loge
when 7 ~ 1 — ¢ We therefore seek an inner expansion in the crack tip region by
writing

hinncr = h(J + EBL

This ansatz is somewhat nonstandard but is introduced so that the function hy re-
mains bounded when matching with the outer region This leads to a simpler integral
equation than the more obvious choice of taking, for example, hinner = €h1

Without loss of generality we examine the behaviour of the solution near the
crack tip, 7 = 1. In this inner region (see Fig. 3 for a schematic diagram) we make
the change of independent variables

rz=Ff—eX, t=T
Although hg is zero for z > At1/®, we anticipate that hy will not decrease to zero
until = = £(£); without loss of generality we assume that £(t) > At'/* and write
£(t) = M2 + ef1(t) (£; > 0). Retaining terms only of order one. we find after some
simplification that

A2 . )
WH(X —6(T) + S'T—gfghm

- K-El + 3T_A2/,5[..x + 4(THHX - el(TD)

) _ A
. (_WEH(X —4{T)) —hix + 3T23(6,(T) — X)

(25 ),
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~ n=1
- A |

™ h ~ x=2{t)
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x= x=10(t) X=

X increasing

FIG 3 Schemeatic of boundary layer regions and variables for the case LL

where ‘H denotes the Heaviside unit step function. Setting

- (X, T
hy = @(:[12):5 )
and integrating, we find that
2
%—(X = £ {(TVH(X — 6(T)) + a(T) + % = (—05 + %(—X +H{THH(X -4 (T)))

(—%H(X —4(T) —ox + m + (}{W %%)x)

where a(T) is arbitrary. Choosing (T} = 0 so that mass conservation is satisfied, we
find that the equation for ¢ requires that either

A A 28, Ty dS
3= e -t g+ () ety ),

or
b+ %(X —H{TYH(X = 6{T)) =0

The second of these conditions will not be considered further. since it merely asserts
that h is identically zero outside the crack From these equations we note that T only
enters the problem as a parameter We may also integrate once again to obtain

SR s A X - ) -
(14)

A L M 9e(8) dS

where K denotes the constant of integration and is determined from the matching
condition

We start by imposing the conservation of mass condition on the solution. We
observe that the boundary layer is of width O(¢) and the solution in this region is of

et i,
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height O(e). so that the total mass in the boundary layer is O(€?). Hence the constant
A in (13) may be determined to this order solely from the outer solution. This gives
A2

=———-—log2.
A 3 9log

Matching may now be carried out in the normal way The two-term inner limit
of the two-term outer solution is given by

9 w2 1. [(2AT3
M=+ Z1og +0 .
[ 9" 27 3103( eX )} (eloge),

and this determines the behaviour of ¢ for large X. We also note that an analysis of
the contributions to the integral term in (14) from each of the regions of the crack
confirms that the upper limit in the integral term of (14) may be replaced by infinity

The behaviour within the boundary layer near the crack tip is therefore deter-
mined by the problem

A L
15y 2K = A g gy - Sogla-x 1K+ 4
¢}

* 9¢(5) _dS
a8 S-X

with

2 g 1 2ATL/3
#(0) =0, ¢~A[—§+§?+§log( e )] (X — co}

The matching condition in this case may be interpreted as providing a relationship
between K and #; for a given T and e. Using the known behaviour of ¢(X) for large
values of X, it is evident that the integral term in (15) becomes negligible for large
X. Thus

(16) K=—+;log

72A A (2)\T1/3) My 2)

For practical purposes it simplest to rewrite (15) in terms of the dependent vari-
able 6(X) defined by

0X) = K - log(1 4 X) + 25 = 20X = 6)H(X — £2) = 6(X)

This gives the linear singular integrodifferential equation

A (1+X A = §/($)dS
7 —g4a 1ax—f
(a7 0 6**"3103( X )+3(1+X) cer=7 T x

with
B0)y=K, 8—0a X —

In principle, a closed-form solution to {17) may be determined. Writing the
equation as

< 0/(S)dS _
9-—][0 BT~ 5x)
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and taking the Laplace transform, we find that the Laplace transform of §(X) satisfies
a linear nonhomogeneous singular integral equation with coefficients that are linear in
the transform variable p The procedure for solving such equations is well established,
and details may be found in Varley and Walker {18]. The homogeneous problem with
condition #{0) = o may be shown to possess the unique solution

B(X) = fﬂ ~ d(s)e-Xelnds,

where

o 1 {° logt
- —— —_—— —=
a(s) (1 + s2)%/4 exp( ﬂ']ﬂ 1+t2d)’

and it thus remains only to determine a suitable particular integral Unfortunately this
is greatly complicated by the fact that the Laplace transform of f(X) is a combination
of exponential integral and Meijer G-functions. In consequence, although a formula
for the particular integral may be written down, it is of little practical use. Since
there is no difficulty in establishing the relevant properties of @ and there are simple
and reliable numerical methods available for (17), we do not pursue the closed-form
solution of the equation further

In order to completely determine the behaviour in the boundary layer we have to
determine K; rearranging (16) then gives £; as

3K w2 2 2ATL/3
bh=——+——=+1log
9 3 €

A

To determine K we observe that although {17) possesses a unigue solution for any
K, there will be precisely one K for which the solution possesses the correct stress
singularity strength A local analysis may be performed to show that this solution
actually has zero slope, the local behaviour being 6'(X} o vX.

For numerical purposes it is convenient to transform (17} to a finite range Setting

14z
T1-z

X ;X)) =~(z)

gives

(18) A(z) - f_ll S 3)2((15__2;'{8)@ =30~ ‘”“"g(iiz) B %m(l —Qm)

with

)~ (P ")(1 -2 -3a-og(152) @)

The solution is computed for various values of K (see Appendix I for details
of the simple numerical method that was used) until the value of K is determined
so that v(—1) = 0 With ¢ and T given £; may then be calculated. With 200
collocation points K was calculated to be —0.2400 so that, for example, with values
of € = 1/10 and T = 2 we find that £, = 4597. Fig. 4 shows inner, outer, and
composite expansions for the crack profile for z positive with these values of € and ¢.
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N o
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0 0.5 1 1.3 3 7

golt) 2(t)

Fic 4 Inner, outer, and composite expansions for crack profile for the case ¢ = 1/16,t =2

6. Discussion and conclusions. Having completed the mathematical analysis
of the above combinations of crack and flow laws, it is instructive to examine the
practical consequences for HDRGER modelling In the case RH, once the crack profile
has been determined the fluid pressure p may also be caleulated Inevitably in this
case the pressure becomes negative and infinite like (x £ £(t})™! near the crack tips
This is no surprise. for the hyperbolic crack law can only give rise to a closed erack
if the pressure does become infinite. A more interesting result of the analysis is that
the expansion in this case is regular in space, and hence the large negative pressures
that are predicted are not restricted to a smali area in the vicinity of the crack tip.
Physically, this suggests that the model must, at some point, break down as the fuid
will not be able to sustain such pressures Modifications could include allowing for
the existence of a region containing a vacuum and/or accounting for the fact that (as
discussed above) Ry is small but nonzero

The cases LL and RL both predict pressures that are zero (relative to the reference
stress) at the crack tips. The pressure in the crack varies smoothly, with only an o)
variation. As the crack tip is approached, the pressure tends to zero with a finite
gradient The matched asymptotic analysis shows, however, that in a narrow region
near the crack tip, the pressure gradient changes rapidly until it becomes zero at
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the tip itself Such behaviour suggests that no special changes to the modelling are
required in such a region

The existence of large negative pressure at the crack tips may have other impor-
tant consequences In particular, since the cracks are preexisting and contain fluid
(albeit a small amount), such pressures will cause the fiuid to be drawn towards the
spreading crack from regions ahead of the crack tip Although coherent experimental
evidence is largely lacking. the fluid pressure in the crack ahead of the crack tip has
been observed in some cases to decrease from its initial in-situ value. Various expla-
nations have been proposed for this; in particular. sliding along part of the crack is
thought under some circumstances to lead to a redistribution of far-field stresses. The
verv large negative pressures predicted above provide a possible additional mechanisiz
for the observed behaviour To determine which of these twe mechanisms is the more
important. however, a much more complicated, fully coupled problem would have to
be considered. and this remains an open question

Appendix I. Numerical solution of the singular integrodifferential equa-
tion arising in the case LL. The boundary layer analysis for the case LL requires
that numerical solutions are calculated for the equation {18) with y(-1) = K and
4(1) =0 A number of numerical methods have been discussed for solutions of equa-
tions of this type (see, for example. [5]), but many such schemes require that (18)
is first recast as a singular integral, rather than integrodifferential. equation This is
usually accomplished by inverting and integrating Here we prefer to employ a sim-
ple direct method. The interval [~1,1] is discretized using N equally spaced points
21 = =1 %2,  .xn_1, zn = 1. and collocation is used to determine the values of ~
at the internal mesh points in [~1,1]. Piecewise linear approximations are used for -y
away from the collocation point, whilst on either side of the collocation point {where
piecewise linear approximations would lead to a nonexistent integral) quadratic ap-
proximations are employed. This allows all the singular integrals to be computed
exactly The resulting scheme may be written as

ylzg) — I{zi) = Flzy) k=23, ...N-1).

where
Fay) = —%{1 —xk)log(ifzi) ‘glog(lf:ck)’
How) = i:? (1- Ik)(;;i+l =) {—h +(zp— 1) log(ﬁ)]
(19) N :Z:l - fu"k)(;g-i-l - %) [—h + {zy — 1)10g(£%)]
N (1 —Q:If‘k) {4%(93;: -0, Y41 (—1 + %(1 - sck))

+’yk_1(1 + %(1 - a:k))jl ‘

Here h = @1 — %4, and in (19), the first surnmation is to be taken to be zero when
k = 2, and the second to be zero when k = N — 1. The scheme described above is
simple to code. and the resulting linear equations may be solved using a standard

bt e
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library routine. (In this instance the NAG routine FO4ATF was used, and coding was
carried out in FORTRAN running on a SUN SPARCstation.} Space does not permit
any morc than the briefest of analyses of the properties of the method (fuller details
may be found in [15] and [6], for example), but the design of the scheme ensures
that the matrix of coefficients of the relevant linear equations is strictly diagonally
dominated (specifically, the modulus of the diagonal element of each row exceeds the
sum of the absolute values of the off-diagonal elements by precisely unity) Test cases
may easily be constructed by suitably altering the function F(zy), and additionally
the known asymptotic behaviour at each end may be used to check the results; in all
cases the scheme performs well. A number of checks were also performed to confirm
that the scheme is insensitive to the number of points used. In all cases sufficiently
accurate results were computed using 200 collocation points
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