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Modelling drainage of the precorneal tear film after a blink
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We study the drainage of the precorneal tear film in humans. A fluid dynamic model for
the drainage of the aqueous layer is developed that includes the effects of evaporation and
gravity. The model may be reduced to a single nonlinear partial differential equation for
the thickness of the aqueous layer. The equation is solved numerically and accurate times
for film rupture are obtained for physically realistic parameters. The results indicate that
although gravity and evaporation are not the most dominant effects in some parts of the
film, they can nevertheless materially affect the film drainage process and should therefore
be included in models for tear film drainage.
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1. Introduction

In this study, we wish to investigate the drainage of the human tear film once the eyelid
has opened after a blink. The tear film is essential to provide a perfect optical surface
for the eye. It also acts as a lubricating layer during blinking and contains enzymes such as
Iysozyme and beta lysin that have bacteriocidal properties (Holly & Lemp, 1977). A typical
interblink time for healthy humans is 5-8 s (Berger & Corrsin, 1974), but interblink times
may vary widely for different animals (for example, a typical interblink time for a rabbit
is 10 minutes). Improved quantitative models for both blinking and tear film drainage are
essential for understanding the behaviour of both normal eyes and eyes affected by the
multitude of conditions known as dry eye (Bron, 2001; Lemp, 1995; Rolando & Zierhut,
2001) The causes of dry eye are many and various, but previous studies (see, for example,
Bron, 2001, Lemp, 1995, Rolando & Zierhut, 2001 and many others) have identified two
main classes of the condition, namely insufficient tear ilm production, and increased tear
film evaporation compared to normal eyes.

The human tear film is most often described as consisting of three distinct layers
(Ehlers, 1965; Mishima, 1965; Wilson, 1954). A mucus layer lies on top of the epithelial
cells of the cornea; an aqueous layer is present above the mucus layer, and a lipid or fatty
layer covers the aqueous layer.

The mucus layer that overlays the corneal epithelial cells has a typical thickness of
0-5-1-0 pm (Rolando & Refojo, 1983; Wong et al., 1996). A long-held view was that the
corneal surface itself was not wettable by water and that the mucus layer was necessary for
the wetting of the cornea (see, for example, Holly, 1973). However, this view appears now
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to have been largely discredited and it is generally accepted that both the cornea and the
mucus are hydrophilic (Sharma, 1993, 1998). Notwithstanding this, the mucus may still
help to promote wetting of the cornea by more subtle means (for example, by transporting
away nonwettable debris). The mucus is 10 to 100 times more viscous than the overlying
aqueous layer (Sharma ez al., 1999), but it may nevertheless slip on the surface of the cornea
(Sharma, 1998). There is some evidence that the mucus layer may itself rupture, and this
may have implications for tear film stability in humans; such rupture was observed in an
analogue system (water over silicone oil) investigated by Sharma et al. (1999).

The aqueous layer is 4-10 um thick (Mishima, 1965; Sharma, 1998 and references
therein). Tt is supplied by the main and accessory lacrimal glands. It is primarity composed
of water, with up to about 2% impurities (Fatt & Weissman, 1992) including inorganic
salts, glucose, urea, proteins and glycoproteins (Holly & Lemp, 1977). It is often assumed
to have the properties of pure water, although it has been proposed that it may be both
viscoelastic and shear thinning (Bron & Tiffany, 1991; Tiffany, 1991). The case for
considering the aqueous and mucus layers as a single layer was made by Rolando & Zierhut
(2001), for example; however, in Holly (1973) and Nagyov4 & Tiffany (1999), virtually no
dissolved mucus was found in tears extracted from humans. In Section 2 we will therefore
formulate a model for the drainage of an aqueous layer that emerges from a three-layer
view of the tear film.

The lipid or fatty layer that lies above the aqueous layer is about 0-1-0-2 gm thick
(Berger & Corrsin, 1974; Franck, 1991; Norn, 1979). For patients with conjunciivitis
or contact lens wearers it may be significantly thicker. The lipid layer serves two main
functions; it greatly reduces evaporation and lowers the surface tension of the tear film,
thus increasing its stability. The lipid layer is expressed from meibomian glands that are
located on the upper eyelids through slits on the 1id margins, and possibly also by the Zeis
and Moll glands (Holly & Lemp, 1977). It has been suggested (McCulley & Shine, 1997)
that the lipid layer is composed of two regions, namely a thin polar, surface-active spatially
ordered component located at the interface between the agueous and the lipid layers, and a
thicker overlying apolar component.

As noted above, the lipid layer plays a critical role in tear film stability by reducing
evaporation (Mishima & Maurice, 1961). A number of previous studies have performed in
vivo measurements of tear fitm evaporation. The average rate of evaporation in normal eyes
was found to be about 4 x 1076 kg m~2 s~ !, but increased to 8 x 1070 kg m~2 s~! for dry
eyes (Rolando & Refojo, 1983). More recent measurements by Mathers (1993) reported
average evaporation rates of 15 x 10~ %kg m™2 s~! for normal eyes and up to 60 x 10~ %g
m 2 57! for dry eyes, and led to a hypothesis that for patients with meibomian gland
loss evaporation may be a major cause of dry eye. Despite the fact that evaporation is a
main classification criterion of the causes of dry eye (Lemp, 1995), it has been argued on
the basis of the data of Rolando & Refojo (1983) that the contribution of evaporation is
negligible. Creech er al. (1998) used a diffusion-limited model for evaporative transport
to make this case. However, Holly & Lemp (1977) estimate that although about 90% of
the lacrimal fluid is removed by the excretory system, the other 10% evaporates between
blinks. Together with the newer data published by Mathers {1993), it appears to us that
evaporation may yet have a role to play in tear film stability; this will be investigated
further below.

The lipid layer also reduces the surface tension of the tear film, In an effort understand
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the role of lipid layer components various analogues for human tear film components
were studied by Holly (1973) in order to develop a theory for the formation of tear films.
More recently, actual human tear film components have been evaluated for their effect on
the surface tension of tears and have been compared with animal analogues (Nagyovd &
Tiffany, 1999). These more recent measurements reported a value of 43.3 mN m ™! for the
surface tension between the tear film and air, while prior measurements have given values
of 46 mN m~! (Miller, 1969); this is a significant reduction from the value of 72.3 mN
m~! for a standard pure water/air interface. McCulley & Shine (1997) reasoned that the
polar layer of the lipid region is mostly responsible for this effect.

An important quantitative clinical tool used by ophthalmologists to quantify dry eye
conditions is the tear film break-up time (BUT). (Exact definitions of BUT vary from study
to study, but all essentially measure the time taken for a dry patch to appear on the surface
of the cornea. This matter will be discussed further below.) BUTs are reduced for all forms
of dry eye compared to normal eyes (Bron, 2001; Holly & Lemp, 1977). A key aim of
this study is to show that addition of gravity and evapceration effects to those of capillarity
predicts very realistic BUTs from a relatively simple hydrodynamic theory derived from
well-known equations of fluid dynamics.

In vivo measurements of geometrical tear film quantities have been made for the tear
meniscus height (TMH) and the tear meniscus curvature (TMC). TMH measurements were
performed by Port & Asaria (1990) in order to assess total tear film volume; Doughty et
al. (2001) measured TMH in elderly Caucasians. Reported TMH values range from 0-18
mm to 0-41 mm (Port & Asaria, 1990); an average value of about 0-33 mm seems to be
reasonable.

TMC measurements have been made using reflective meniscometry by Yokoi ef al.
(2000) in order to correlate TMC with dry eye conditions. Creech et al. (1998) used
a profile view and digital processing to measure TMC, and found an average radius of
curvature of about (35 mm. They then computed tear film thicknesses away from the
meniscus using the results of Wong ef al. (1996), obtaining resulis that ranged from 2.8
pmto 24 pm.

Previous theoretical efforts to describe the mathematics of tear film formation have,
in our opinion, been mainly successful, although much still remains to be accomplished.
Berger & Corrsin (1974) sought to explain the rise against gravity of particles on the
tear fitm surface via surface tension gradients. They formulated a Lagrangian model for
surfactant transport and particle location that explained the role played by surface tension
gradients in a short time period following a blink. A typical blink lasts about one-third of a
second and covers a distance of about 1 cm (Fatt & Weissman, 1992). Wong et al. (1996)
used a coating flow model to describe tear fitm formation as the eyelid opens; their model
included only capillary and viscous forces and used no slip boundary conditions on both
sides of the aqueous layer. Using measured experimental eyelid speed data, they computed
a tear film with a thickness of 68 pm over most of the area of the cornea. Their theory
may be regarded as the simplest model that satisfactorily explains the process of tear film
deposition.

Wong et al. (1996) used the same physical assumptions to describe the subsequent
drainage of the film. Using a local model at the edge of the tear film, they predicted a
power law behaviour that estimated a time of 40 s until the film thickness reduced to 800
nm, after which a very rapid rupture process due to van der Waals’ forces was expected to
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take over. The average BUT of normal eyes varies according to circumstances, but appears
to be in the range of 20-30 s (Al-Abdulmunem, 1997). For dry eyes the BUT may be
10 seconds or less (Bron, 2001). We believe that tear film drainage modelling may be
improved by examining models of the tear film that include the regions near to the upper
and lower eyelids and the film in between: this is the primary purpose of this paper.

Sharma ef al. (1998} studied the capillarity-driven thinning of the tear film wusing
a lubrication-type model that retained the full curvature terms from the normal stress
boundary condition and allowed both no-slip or stress-free boundary conditions at the
deforming free surface. Curvature was specified at the ends of the film. Varying the initial
film thickness and curvature at the ends of the film produced a range of plausible BUTs.
Amongst other problems, Bertozzi et al. (1994) studied the lubrication form of the same
capillarity-driven problem as Sharma ez al. (1998) with a stress-free film surface to examine
singularity formation and similarity behaviour. Their resulis are relevant to the current
study and will be discussed later. Previous models have therefore been largely successful
for cases where evaporation is minimal and gravity is absent, so that dry eye is caused by
tear film volume deficiency. We wish to explore scenarios when evaporation is suspected
of contributing to, or causing, dry eye.

Away from the tear menisci at the eyelids, we shall show that gravity must be accounted
for in the description of the tear film. We shall also add evaporation via a ‘one-sided’
approach introduced by Burelbach et al. (1988) and Joo ef al. (1991). The key idea in this
model is that all of the parameters (density, thermal conductivity, viscosity) in the vapour
are small compared to those in the film and thus the vapour plays a passive role in the
evolution of the film. Using this thermal model for evaporation instead of the diffusion-
limited model discussed in Creech et al (1998), we can make use of experimental data for
evaporation rates and illustrate their impact on tear film drainage. Although evaporation on
its own is not the primary physical mechanism, we shall show that it can nevertheless work
in concert with gravity and capillarity to produce very plausible tear film BUTSs.

Sharma and co-workers (Sharma, 1998; Sharma er al, 1999) have studied the role
of van der Waals’ forces in the wetting of the corneal surface. They argue that van der
Waals® forces can be such that tear film break up is prevented (as opposed to the more
commonly studied case where rupture is promoted, as pioneered by Williams & Davis,
1982). We omit these effects until a futore study and investigate the case without them in
order to compare with Wong ef al. (1996) and Sharma et al. (1998). We also neglect any
dependence of the surface tension of the tear film surface on temperature, because the of
the heavily ‘contaminated’ surface there.

The paper is organized as follows: the basic model is formulated in Section 2 where
lubrication theory is applied to determine an evolution equation for tear film thickness.
In Section 3, numerical results are presented for various combinations of the effects of
capillarity, gravity, viscosity and evaporation. The results are discussed in Section 4 and
conclusions are summarized in Section 5. Finally, some estimates are made in an appendix
to show that slip of the mucus layer along the corneal surface is unlikely to be an important
effect.
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F1G 1 Schematic diagram of coordinate system used for tear film drainage model

2. Formulation

Consider a two-dimensional draining film in a Cartesian coordinate system (x’, ¥') (a
schematic diagram of the coordinate system used is given in Fig 1) The corneal surface
is assumed to be a vertically oriented plate positioned at y' = 0; the fact that the plate is
considered to be flat is justified because the radius of curvature of the cornea is so much
larger than the film thickness (see, for example, Berger & Corrsin, 1974). Gravity acts in
the positive x'-direction so that g = gf where # is a unit vector in the x’-direction and gis
the acceleration due to gravity. The free surface of the film is denoted by y' = #'(x', #).
The surface of the mucus layer above the cornea is at y' = 0; it is assumed to be a no-slip
surface (although this approximation will be discussed further in the appendix). The half-
length of the corneal surface between the two lids after a blink is denoted by L. Finally, we
assume that the tear film is a linear viscous fluid, and that its density p (kg m—3), dynamic
viscosity p (Pas), thermal conductivity k (W m~! K~} and specific heat ¢, J kg~! K~1)
are all constant.
The equations governing the flow and temperature in the film are

v .y =0, 1
P+ VW) = uV —V'p + pgi, @
pep (Th+ @' VIT) = kv, 3)

where ¢’ denotes time, ¥' = (¢/, v') is the fluid velocity, p’ is the pressure and T” is the
temperature inside the fil. The primes denote dimensional variables.
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On ¥y = 0, we assume that the no-slip condition holds and the temperature is
prescribed. Thus

W =v =0, and T’ = Tpge, @)

where Tpy, is the temperature at the base of the aqueous layer of the tear film which is
assumed to be the body temperature of 37 °C. We examine alternative slip conditions in
the appendix

On the free surface y' = A'(x', t"), we need to specify one kinematic, two dynamic
and one thermal boundary condition. These conditions will include the effects of surface
tension and evaporation. We therefore set

p(V — k), -k Yy
e =J, 5
A+ 1172
[[ﬁTT’fz]] — Ho, 6)
f-v' =0, ()]
[k# - V'T]] = ~LnJ". @®)

Here J' (kg m™?s™!) is the evaporative mass flux leaving the surface of the film, 7" is the
stress tensor, # and # are the unit normal and tangent vectors respectively (with & pointing
out of the film and 7 - > 0), H' is the mean curvature of the free surface of the film,
defined by

-1/2
H =V [(1 + VI |2) V’h’] . )]

o (N m %) is the surface tension of the film (assumed constant) and Ly, (J kg“l) is the
latent heat of vaporization of the aqueous tear film. The double square brackets denote a
jump in the quantity across the free surface; in pariicular, [ f1] = f film _ ¢air for the free
surface between the film and the ambient air,

The kinematic condition (5} accounts for changes in the shape of the free surface due
fo evaporation and fluid motion, and (6) accounts for the jump in normal stress at the free
boundary due to surface tension (vapour recoil effects may easily be shown to be negligible
in this context and have been ignored). The lipid layer above the aquecus layer is modelled
by adopting (7), which states that the effect of the lipid layer is to render the free surface
tangentially immobile. We expect that this will be accurate once the tear film has been
deposited (see, for example, Wong et al., 1996). Finally, (8) is a balance between heat flux
and latent heat release due to evaporation.

To close the model a constitutive law is required for J'. Many such laws have been
proposed (see, for example Burelbach et al, 1988 and Panzarella et al, 2000), but
essentially the majority use linearization to assume that J' is proportional to the difference
between the saturation temperature Tg (K) in the vapour and the surface temperature
T/ =T'(x', W' (x', '), ) of the film. We thus write

J o (T] — To). (19

where the constant of proportionality will be specified to fit measured evaporation rates in
dry eyes.
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Finally, we assume that the air above the film is a passive gas that has no influence on
the flow in the film and that tear film that evaporates into the air is “instantly removed’ so
that the air above the film has properties that are both spatially and temporally constant.
All of the quantities that determine the film flow and evaporation (apart from the vapour
density o) are thus determined from the film itself in this ‘one-sided’ model.

2.1 Lubrication theory

We shall now use standard thin-layer theory to model the drainage of the tear film. We
begin by non-dimensionalizing (1)—(3) and boundary conditions (4)—(8). We set

' =fx,V =dy, ¥ =dh, u' =Uu, v =elUv, an
¢ wlU T - T,

==t p="p 8 =——"", 12

v TP T T, (12)

where ¢ = d/f and d and ¢ are length scales that are to be decided, as is the horizontal
velocity scale U. The equations become

ty + vy =0, (13)
*Re (u; + uty + vity) = sy + €2uyy — px + G, (14)
’Re (v + uvr + vvy) = €vyy + Evgy — %, (15)
1
RePr(6, - uly + vy} = Oy + 6—29”. (16)
with
u=1v=0, 6=1 (17)
on the eye surface y = 0 and
J! 252172
v —hy — uhy = ——(1 + €%hd) (18)
epl
262[vy — uyhy + €2 (uxh? — vehy)] o€ ey
_ = (19)
1+¢ZhZ pU(l + €2h2)1/2
U+ €elvh, =0 (20)
el J'
By — 2B = ——— (1 + 2622 (21
Ty SR
ony = h{x,t) Here
e 2
Re=Y prote g R8T 22)
v k ull

‘We shall now estimate some of the terms in the equations and boundary conditions. We
assume that 4 = 10 pm (as observed in Section 1, this mmay be regarded as a typical tear
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film thickness), We further assume that £ denotes the meniscus length, This is given (see,
for example, Wilson, 1982) by
¢ =d'Pp? (23)

where D = ./o/pg is the static meniscus radius. Using g = 9-81m 572, p = 10° kg
m~ and ¢ = 0-045N m~! (Wong et al., 1996; Miller, 1969), we find that D = 2.1 mm
and £ = 0-36 mm. A typical draining velecity may be estimated by assuming that the film
drains 1 cm in around 10 s; thus U ~ 103 m s~1. With & = 1.3 x 10=°Pa s (Ehlers,
1965; Wong et al., 1996) we now find that

G ~ 075 (24)

and we conclude that gravity must be retained in the equations. Since G is order unity, we
further infer that the correct scale for the velocity is

d2
=" 075mms I, 25)

which is used henceforth. Some other parameters may now be estimated: we have
€ ~0028, Re~02, &Re~16x10"" (26)
and, with k = 0-68W mK~! and ¢, = 4-19 x 10* Tkg™* K~ (values for water)
€*RePr ~ 1.3 x 1072 27
Finally, we note that from our choice of scalings o /(nU) = 1 so that the term on the

right-hand side of (19) must be retained.
The leading-order equations and boundary conditions are therefore

uy +vy =0 28)
py=0 (30)
Byy =0 (31}
with
v=v=0 6=1 (32)
ony=0and
Jeu
U—h;—uhx=d3—")2é (33)
—P= hyx (34)
u=0 (35)
!
6, = eflnd (36)

 k(Tege — 1)
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on y = A(x,t). We now need to determine the importance of surface tension and
evaporation. The non-dimensional parameter that determines the importance of surface
tension is unity by dint of our definition of £, but we note that, away from the menisci near
to the centre of the tear film, we anticipate a slowly varying film thickness with & nearly
constant. The effects of capillarity are thus confined to regions of the tear film near the
menisci where Ay, ~ 1.

Finally, the effects of evaporation are governed by two non-dimensional parameters.
With Ly = 2-3 x 10° Tkg~! (the value for pure water), Teye—T; = 1IKand J' =3 x 1073
kg m~2 s~ (a value for mildly dry eyes), we find that

T 03l

e — B 1.0 x 1075 37
d3ng k(Toye — T) * &7

Although for much of the film draining process evaporation is therefore insignificant,
we note that when the film becomes thin {for example when d ~ 1 ym) evaporation may
have a much more important role to play in the final rupture of the tear film. We thus retain
the evaporation terms in the model.

Solving for the velocity components and the pressure in the usual way now gives that
p = —hyyand

(y—mp=—1 ? 1 Y by
w=22 sz ; U=thx(Px—1)—'2'Pxx T ) (38)
and imposing the free surface condition now yields
3 eud’
he + I:E (Rxxx + 1):|x + W =0 (39

We now non-dimensionalize the evaporation term by setting J' = kJ /(d Lp,) and assuming
that J = Jy(T'(h") — T) where Jy is dimensionless. The problem for the temperature
becomes

By =0, 6(x,0,6)=1, 6y(x,ht)=—Job(x, b0 40
and thus
Joy
d=1— ) 41
1+ Joh “h

The governing equation for the evolution of the film thickness is thus

E fias
bt —F—+ | 5 G+ G| =0 (42)
Joo 4k |12 .

where

E— k(Teye - Ts)eﬂ‘

43
d*gp?Lm “
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This equation is similar to those derived by Burelbach et al. (1988) and Panzarella et al.
(2000). We further note that, by our choice of scalings, G = 1; however, we have retained
G in (42) to allow us to examine cases without gravity by setting G = 0.

The equation (42) requires one initial and four boundary conditions. We shall assume
that

h(£L) = hg, (44)

where L is the half-length of the film. This is tantamount to assuming that the tear film
is ‘pinned’ at the top and bottom lids. It is generally accepted (see, for example, Fatt &
Weissman, 1992) that material above the ‘grey line” on the superior and inferior tarsi is
unwettable.

Two other boundary conditions are required, and sound cases may be made for a
number of different choices. First, the tear film curvatures k., at each end of the film
may be specified. In the absence of the effects of gravity, the static meniscus has a constant
curvature; even with the effects of gravity present, however, many sources have suggested
that constant curvature menisci have been observed. Second, the slope %, at either end may
be specified; this specifies the contact angle. A constant contact angle has frequently been
assumed in the fluid mechanics literature, but there seem to be few direct measurements of
this quantity for eyes. Finally, it is also possible to specify the fluxes at either end. All of
these three possibilities are investigated below, although when we have specified the fluxes
we have assumed that they are zero; resulis including the effects of tear film production
and elimination will be postponed to a future study.

The initial conditions for which we compute solutions assume a flat film with parabolic
ends, namely,

h— { Rmin (0), x| < L — Axp,

Fnin(©) + A [[%] — (L — Ax),  |%] > L — A 435

Here Axp, is the width of the parabolic initial meniscus; fnn{(0) = 1 (corresponding to an
initial thickness of 10 xm) is used for all computations that follow. We shall vary Ak, and
Axy because these can vary from person to person, but all values used will be averages
based on experimental evidence. Note that hy = Amin(0) + Ahm(Axp)? for this choice of
initial condition. (For normal eyes, typically 1 < Axp £ 2 when measured in units of £
and ko ~ £, while for dry eyes Axp, < 1 and kg < £.)

22 Eguilibrium solutions

Equation (42) is nonlinear and, in general, must be solved numerically: this will be
addressed in the next section. First, however, we briefly examine some of its properties.
Equilibrium (i.e. time-independent) solutions may exist in the absence of gravity and

evaporation. Such solutions satisfy
h3
(Ehxxx) =0. (46)
X

For cases where there is no flow in the film, the equation may be integrated to yield iy, =
0, which implies possible parabolic equilibria. Whether or not such equilibria exist depends
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upon the boundary conditions; in all cases that we consider, the film thickness is specified
at the ends so that (L) = hy. When no flux conditions are applied at the ends of the film
so that s, (L) = 0, solutions now take the form

C
h=hy+ E(xz 1% €

where the constant C may be determined by integrating s and equating the result to a
prescribed total area Ap of the film. We obtain

_ 6Lhy — 34
o213

Tor sufficiently small values of Ag, we find that & is non-positive. This first occurs when
Ag = 2Lhkg/3 and thus C = 2hy /L2; in that case, (0) = 0 and when Ay is less than or
equal to this value, no physically sensible equilibrium solution with # > 0 is possible. For
sufficiently large Ag, equilibria always exist.

The case when the curvature ky, is specified at the ends (say A (£L) = r), was
studied by Bertozzi et al. (1994). With the scalings defined in Section 2, equilibria are
given as by (47) with C = r, If r < 2ho/L? then equilibria exist; for larger r, there are
no equilibria with # > 0. The case when the contact slope k. is specified is similar. For
hy(£L,t) = £m, we have C = m/L and if m < 2ho/L there are equilibria; for larger m,
there are none with 2 > 0.

When the effects of gravity are included, matters are complicated slightly. Equilibrium
solutions with no flux must now satisfy

C (48)

Barx +1=0 (49)

The solution to this equation is a cubic polynomial in x containing three arbitrary constants.
Two of these may be determined by imposing 2(£L) = hg, and, as in the case with no
gravity, the third may be determined if the total area Ag of the film is known. We obtain

x> =13
1213

Clearly for fixed #p and Agp this solution becomes non-positive as L increases. For
representative values of iy = 17 (corresponding to a meniscus height 0-17 mm) and L =
14 (an inter-lid distance of just over 1 cm) we find that there are no equilibrium solutions
with 2 > Qunless Ag > 6600. Since a typical initial profile (45) (for example with L = 14,
Axp =2 and Ahy, = 4 so that Ag = 17) has non-dimensional area 49.3, we conclude that
normal eyes contain far too little tear film to allow equilibrium tear film shapes with & > 0.

Finally, when both evaporation and gravity are included we expect on physical grounds
that equilibrium solutions may be possible if there is a net inflow into the tear film region to
balance the mass loss due to evaporation. Rigorous analysis of the boundary value problem
appears to be challenging in this case, however,

b= hg - (18hoL — 2L3x — 94p). (50)

2.3 Film rupture

It is also worth noting that, in the absence of evaporative losses and gravitational effects, it
has long been known that solutions to (42) that are initially everywhere positive cannot ever
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become zero provided %, remains bounded (see, for example, Bertozzi ef al., 1994). It
seems plausible that a similar result holds when gravity is included. When the evaporation
terms are included it is clear that film rupture can take piace, however. Although evapora-
tion is obviously a key component of our model, it should be remembered that other effects
may be important for very thin films. For example, van der Waals” forces may be important
in the final details of film rupture (see, for example, Burelbach e al., 1988; Sharma et al.,
1999). We have chosen to ignore such short-range forces in our model, however.

3. Results

To generate detailed results showing the effects of surface tension, gravity and evaporation,
the nonlinear PDE (42) for the tear film thickness was integrated numerically. The
spatial derivatives were discretized using a conservative finite-difference scheme and the
resulting ODEs for the k;(f) = h(x;, ) were solved using DASPK (Brenan ef al., 1996).
DASPK uses variable BDF (backward differentiation formula) time stepping which is
stable and efficient for this type of problem; this type of approach has previcusly been
used successfully in similar circumstances (Braun et al., 1999; Naire ef al., 2001). The
conservative finite-differencing scheme is essential for the extended times for which we
compute solations. 4000 uniformly spaced grid points were used for all results presented
here; tests showed that increasing the number of grid points further made essentially no
difference to the results, The code encountered the expected difficulties when A = 0 owing
to the high-order surface tension term; in what follows, when we wish to determine when
f — 0, the code is halted when the value of 4 is less than a single grid spacing; this time
is adjudged to be the BUT.

Table 1 gives the values of the parameters used in the computations. Unless otherwise
noted, all computations were performed on a domain —L < x € L with L = 14; this
corresponds to a dimensional distance between the eyelids of 1-008 cm.

3.1 Capillarity only

Solutions were first computed in the absence of gravitational and evaporative effects (G =
Jo = E = 0) in order to completely validate the numerical code and to compare with
previous studies.

Results for the initial condition Ahy,, = Axy,, = 2 (corresponding (o a realistic, but
rather small meniscus height and curvature) with the tear film curvature specified at x =
=+ L are shown in Fig. 2. Here and henceforth, a nondimensional time of 2-08 corresponds
to 1 s. We observe that the thickness of the film changes most rapidly near to the edges of
the domain; the minimum film thickness,

Pmin(2) = n%nah(x, 1),
occurs near the edge of the meniscus at about x = 12 as found in Wong et ¢l. (1996). The
film curvature (shown in Fig. 3) is non-zero everywhere and thus flow occurs over all of the
tear film, although in the interior of the film away from the menisci both the curvature and
flow speeds are small. As the film thins near to the menisci, it also thickens in its interior
(although for very large time scales, the centre of the film does eventually thin). However,
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TABLE 1 Unless otherwise stated, these properties
and dimensional gquantities were used in all of the
computations reported below. The value of I’ is from
Mathers (1993} and is the highest average for dry eye
patients; the values of AT = Teye — Ty, Jy and E
recover this dimensional value when 8 = 1.

Parameter Value
P 10° kg m™—>
g 98l ms—2
I 13 x 10 3Pas
o 0-045N m—!
Em 23 x 100 T kg1
k 068 Wm K1
AT = Tege — T 10K
! 6x10 3 kgm 25!
d 10=5m
e 36x 1074 m
u 7.5 x 107 %m s~ !
€ 0028
E 14-1 or 0
It 4930 or 0o
G Oorl

9 T I T I T I T

8”..

7_

B — 0

6 ———1

- —_—
sk i—m 16
STL —— 64
= - - 128

4- — 256

L ———- 512

3_

2_

IW

A | R R
% 2 4 6

i3

F1G.2. Numerical solution of (42) for the whole film (—L < x £ L) with no gravity or evaporation (G = ¥ =
Jo = 0)and L = I4; only half of the film is shown because of the symmetry about x = 0. The initizl conditions

have Ahy = Axpy = 2 The boundary conditions are #(£L, 1) =9, by (L, N =4.
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FIG. 3. Curvature evolution with G = E = Jy = 0 for the same data used for the results of Fig. 2. The curvature
appears to evolve towards a step change with time when the initial curvature in the meniscus is relatively large.

the results of Fig. 3 show that no thickening of note occurs until at least 1 = 512 (246 5),
which is a great deal later than the BUT found experimentally by Al-Abdulmunem (1997).

When %, (XL, #) is specified, the meniscus shape at the ends of the tear film is
prescribed. However, different boundary conditions were also considered. Results using
a no-flux condition, which, with G = 0, is fiyxy{+L, 1) = 0, are shown in Figs 4 and
5. We find that the thinning of the film is slowed compared to the case of Fig. 2 with
hyx (XL, t) specified. For example, for the case with initial conditions Aky = Axy = 2,
we have Ayin(512) ~ 0-126 for the no-flux case of Figs 4 and 5. In contrast, for the case
with %, (£L, 1) given (shown in Figs 2 and 3), we have by (512) &~ 0-054. We shall
discuss this point further below. The curvature of the meniscus, shown in Fig. 5, steadily
decreases at the end of the film for the no-flux case as liquid accumulates there.

When h.(tL,t) is specified, the results are very similar to those obtained by
specifying the curvature, so long as the meniscus height is relatively large compared to the
film thickness (Ahy, = 2) Since this is the parameter range of interest, we have omitted
these results.

When only capillarity is active, the BUT may be defined as the time required for Amin(¢)
to reach 750 nm, after which we assume that van der Waals® forces would cause rupture
as in Wong ef al. (1996); we believe this thickness to be generous for these forces to take
over. Using this criterion, for a film with Aky = Axy = 2, the non-dimensional time to
reach 0-75 pm thickness is 256, or just over 2 min. However, for a film with Ahy, = 8,
Axym = 2, the BUT reduces greatly to 7.7 s. For the same film but with a smaller cut-
off criterion of sély 0-54 pm, we find that Az {32) = 0-54 pm (about 15-4 seconds). The
BUT is thus sensitive both to the initial conditions and to the assumed cut-off thickness
for Tupture to begin. A typical thickness for van der Waals’ forces to become important
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F1G. 4. Computations with G = E = Jy = 0 but with no-flux boundary conditions. The minimum film thickness
remaing greater and evolves more slowly than in Fig. 2, but this difference diminishes as the initial curvature of
the meniscus is increased.

4 N I R B R L R R

350

F1G. 5. Curvature evolution with G = E = Jy = 0, for the same data used in Fig. 4. The curvature now decreases
dramatically at the boundary compared to the results of Fig, 3

and thus for the rupture to begin for an aqueous film is of order -1 um (see, for exarmple,
Sharma & Ruckenstein, 1986).

Taking the view that the comea is easily weitable, Sharma ef al. (1998) concluded that
rupture never actnally occurred; when the film thickness is reduced to about 0-1 um, a
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FIG. 6. Minimum film thickness A (f) with G = E = Jy = 0 for no-flux and fixed-curvature boundary
conditions The initial conditions are given by Axy = 2 and (a} Ak = 1, (0) Akyy = 2, (€} Ak = 4, (d)
Ahpy =8

stable film should be formed. We take the view that break-up can occur when evaporation
is included in the model, and for convenience we retain this view in all the cases that we
discuss below. )

Varying the size of the meniscus clearly has a substantial effect on the evolution of
Buin(?). This agrees with the results of Sharma ez al. (1998). Resulis for the evolution
of hmin(t) for several initial conditions and both no flux and fixed-curvature boundary
conditions are shown in Fig. 6. As the curvature at the boundary increases, it becomes
dominant in determining the thinning behaviour because the no flux solution tends to the
constant curvature behaviour. It may be confirmed that the minimum film thickness evolves
like Apin () o ¢~%0 for large times as found by Wong et al. (1996). Our result, however,
has been computed using a global model for film thickness Similar results were obtained
by Sharma ef al. (1998) using a model for the whole tear film.

Bertozzi et al. (1994) found =03 behaviour for the infinite-time film rupture
singularity, obtaining both analytical and numerical results, for a problem identical to that
studied in this section (although with a different initial condition). Their adaptive mesh
code clearly identified this behaviour for a number of decades below k == 0-01, which is
less than the thickness for which we can compute reliable numerical solutions, For very
large times, we therefore expect that our exponent of —0-46 would be modified to —0-5.
Related problems of film drainage in tubes also display £=93 thinning behaviour: see, for
example, Hammond (1983} and Jensen (1997).
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F1G. 7. The case with no gravity (G = 0), but with evaporation (/5 1= 4930, E = 14.1); L = 14, Ahy =
Axm = 2, and hxx = (L, 1) = 4. For clarity, only the interval 0 < A < 3 is displayed. Note that evaporation
causes the entire film thickness to decrease during the evolution.

3.2 Capillarity and evaporation only

We now consider cases where G = 0 but E and Jy are non-zero, so that evaporation is
active. Numerical results for a film with curvature specified at the ends are given in Fig. 7.
The film remains symmetric about the origin, and the evolution is in many ways similar to
the preceeding case. However, evaporation now causes the film to thin everywhere (except
at the pinned ends), leading to a finite BUT of roughly 82 (39-4 5). For a case with Ahpy = 8
(which is more representative of the value that might be expected for a normal eye), the
BUT is 43-5 (21 s). When evaporation is included, the film reaches zero thickness in finite
time: hence no cut-off value is required or used here. Further criteria for rupture will be
considered below. ‘

Figure 8 shows a comparison of results for imin(t) for four different initial conditions
with and without evaporation. The ostensibly smail rate of evaporation eventually
dominates the capillarity-driven thinning noted in the previous section (whete the rate
of thinning decreases with time). This is shown by the departure of the curves with
evaporation from the those without at later times and the subsequent rupture of the film.
This figure illustrates how even a relatively small evaporation rate can affect the later stages
of tear film drainage; this result is central to our work.

3.3  Capillarity and gravity only

Next we study tear film evolution with G = 1 and E = Jp = 0, so that gravity now acts in
the problem, but evaporation is absent.
Results Tor initial conditions Ahy = 1, Axm = 2 (a relatively small meniscus) and
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F1G.8. Minimum film thickness g, () with G = 0, without evaporation (solid line} and with evaporation
(broken line) for fixed-curvature boundary conditions with Axy = 2 and (@} Aky = 1, (b) Aky = 2, (C)
Ahp = 4,{(d) Ahp =8

boundary conditions A,y (L, ) = 1 are shown in Figs 9 and 10. The inclusion of gravity
causes the region near to the upper lid to thin more than the region near to the lower lid.
At the lower lid, a shape that at each time is close to that of a static meniscus develops;
this arises essentially from a balance between gravitational and capillary forces. Clear
qualitative differences in the draining process are observed when gravity is included; the
film is no longer symmetric about x = 0 and away from the menisci gravity rather than
capillarity dominates the drainage process. Gravity also causes the formation of a bulge
similar to a classical ‘tear pool’ near to the lower lid.

Results at ¢+ = 64 (31 s) for no flux boundary conditions and four different initial
meniscus conditions are shown in Fig. 11. We observe that, in all four cases, the film
appears to consist of four distinct regions: (i) near to x = —L the film thickness decreases
sharply as gravity drains fluid away from the region near to the upper lid, (i) the film
thickness slowly increases in a gravity-dominated region that extends over the middle part
of the tear film, (iii) as the lower lid is approached, capillary, viscous and gravity effects all
become important and a capillary wave is formed and (iv) the capillary wave is connected
to the tear pool meniscus near to the lower lid. The qualitative details of the film drainage
are therefore relatively insensitive to the initial conditions.

In Fig. 12 the minimum film thickness hyi,(#) is plotted for a case with no flux
boundary conditions for four different values of the meniscus parameter Ahy,. In order
to illustrate the differences between the thinning process near to the top and the bottom
of the tear film, both of the local minima near the top and the bottom of the film are
plotted. We observe that the ki, changes a great deal more rapidly near the top of the
eye. These results may also be used to show that, near to the top lid, Apint) ~ =03 for
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F1G 9 A case with gravity (G = 1) but no evaperation (E = Jy = 0}, no flex boundary conditions and
Abm = 1, Axym = 2. The film develops asymmetric menisci at the top and the bottom; gravity acts from
left to right, The long middle region has very little curvature and is driven by gravity The very small menisci

prescribed initially allow for a bulge (the ‘tear pool’) at the bottom of the film, which, at each time shown, is a
good approximation to a static meniscus.
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FIG 10. Zooming in on the results of Fig. 9 (G = 1, E = Jy = 0, no flux boundary conditions, Al = 1,

Axpyp = 2). The thinnest region occurs near the top of the film; some oscillation is visible where the film drains
into the lower meniscus
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Fic 11 Results for four different initial conditions at t = 128 (62 s) are shownfor G = 1, E = Jyp = & (2)
Al = 1; (0} Ak = 2; (c) Abm = 4; (d) Ak = 8. In all four cases we use L = 14, Axm = 2 and no-flux
boundary conditions are assumed. As the curvature of the initial menisci at the ends increases, the depletion of
the top region is enhanced
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FiG. 12, Minimum film thickness ks (f) with G = 1, E = Jy = 0 for no-flux boundary conditions. The initial
conditions are given by Axym = 2 and (a) Ak = 1, (b) Akm = 2, (¢) Ahm = 4, (d) Ahy = 8. The minimum
changes much more rapidly near to the top of the film.

Targe times. This result may be contrasted with the case where no gravity is included where
Bmin(®) ~ 9%, and clearly shows that gravity has a non-trivial role to play in the analysis
of tear film drainage and should not be ignored.




TEAR FILM DRAINAGE MODELLING 21

3 IR L U L L B ' I
25+ | |
| |l — G=E=1=0 1
A \ - G=0,E=141,7,"=4930 _
l mom G2l B0
- | ——- G=1,E=141,1,"=4930
s | -
= |
i |t i
!
L1 i
¥
05— \ |
I 1
%

F1G. 13. Comparison of different cases with and without evaporation and gravity for Ahy = Axpy =2, L = 14

for £ = 64 (31 5) and fixed curvature boundary conditions. The role of evaporation is more important as the film
thins; the rate of thinning decreases in its absence.

It is also possible to investigate the effects of different boundary conditions on the
evolution of the film. Wong er al. (1996) used constant curvature conditions consistent
with their view that tear film deposition was essentially a coating flow problem. As noted
above, one could just as well apply fixed slope (i.e. contact angle) or no flux conditions.
When gravity is included, the no flux condition becomes hy. (L, t) + G = 0. We have
investigated all three of these cases, although space does not permit a detailed analysis of
all the results. However, fixing either /i, or Ay, at the ends yields very similar results io
those discussed above when the meniscus height at the ends is large compared to Jyin (0);
either case causes faster drainage than cases where no flux boundary conditions are applied,
although the behaviour may be more complicated for smaller menisci,

34  Capillarity, gravity and evaporation

Finally, results were computed for cases when both gravity and evaporation were active
(G =1, E > 0, Jo > 0). In most respects, the evolution of the tear film is similar
to that observed in the preceeding section. However, when evaporation is included rupture
again occurs in finite time. As we have already observed, evaporation becomes increasingly
important as the film thins, For brevity, we simply compare results at time ¢ = 64 (31 s)
for Ahy = Axy = 2, L = 14 and constant curvature boundary conditions, with and
without both gravity and evaporation. The resuvlts plotted in Fig. 13 show that evaporation
reduces the film thickness, but that the thickness change is not dramatic, However, when
the thickness decrease is slowing down as in either case without evaporation, the relative
importance of evaporation increases as a means of thinning the tear film.
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F1G. 14. Comparison of cases with and without evaporation and grav'ity for Ahy = 8, Axm = 2, L = 14,
Gravity and evaporation co-operate to significantly reduce the predicted BUT

Finally, Fig. 14 shows the evolution of Ay, (2) using parameters Ahy = 8, Axy =2
and L = 14 and fixed-curvature boundary conditions. These may be regarded as cur ‘best
guess’ at parameters for eyes with a normal tear film volume, but dry eye evaporation rates.
Both gravity and evaporation clearly enhance drainage and when both are included ruptore
occurs at a much reduced time of about r = 25-5 (12 s).

4. Summary and discussion

When the effects of capillarity alone are present, our model is closely related to that studied
by Bertozzi et al. (1994) and Sharma et al. (1998), although the latter do not adhere strictly
to lubrication theory. Both of these studies also vse different initial conditions. The power
law exponent of Wong et al. (1996}, who carried out a local analysis, was recovered.

Including evaporation significantly reduced the tear film BUT. The essentially linear
rate of thinning due to evaporation becomes significant at large enough times because the
power law thinning from the capillarity slows as time increases and the film thins. Figure
8 clearly illustrates this behaviour.

Including gravity clearly shows the tear film is redistributed from the top to the bottom
of the eye; the accumulation is more noticeable for small menisci, than when larger (and
possibly more realistic) menisci are used. Flow in the extenstve, relatively flat, middle
of the film is dominated by gravity; similar behaviour has been observed for free films
{Braun et al., 1999; Naire ef al., 2001; Schwariz & Roy, 1999}, The inclusion of gravity
promotes film break-up nearer to the top of the film and may decrease the exponent in the
thinning of the film there. The change in the exponent is significant, the behaviour changing
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TABLE 2 Summary of non-dimensional break-up times {and in seconds) with hxx
specified at the boundaries. The addition of gravity and evaporation reduces BUTs.
The case with infinite BUT occurs because there is a net influx of fluid at the top of the
film for this set of parameters.

BUT BUT BUT BUT

G=0 G=0 G=0 G=1
Aby hx(£L, ) E=0 E=141 E=141 E=141

Jo=0  Jt=4930 Jyl=a930 J5l=4930

1 2 2180 (1048 s) 104 (50 s) 121 (585) oo
2 4 627 (301s)  642(31%) 82(39s)  104-8(50s)
4 8 153 (74 5) 38-1(189) 57528 s) 42-8(21s)
8 16 38-0 (18 ) 19-7(10s)  435(21s)  255(12s)
from =046 to =08 over the time range of interest. When both gravity and evaporation are

included, obviously the break-up of the film near to the upper lid occurs even more quickly.

Whichever effects are included, we observe that, when the initial curvature in the
menisci is made large enough, the upper meniscus behaviour becomes relatively insensitive
to the type of boundary condition used. Although the meniscus curvatures used in this study
were chosen to reflect average values for human eyes, they are still smaller than some
values pertaining to patients with dry eye due to insufficient tear production; using such
values would invalidate the assumptions of lubrication theory. Although the most extreme
meniscus conditions that we have computed stretch the validity of lubrication theory almost
to its limits, we believe that the trends have been correctly identified in this study.

Computed BUTs are summarized in Table 2 for cases where the curvature Ay, is
specified at the boundary. The addition of both gravity and evaporation speeds up the
rupture process. The notable exception to this is the case with the smallest meniscus when
gravity is included; here, an influx occurs at the upper boundary, the film reaches a steady-
state profile, and the film never ruptures.

When the effects of gravity are included, film rupture always occurs near to the upper
lid. Without gravity all previous theoretical models show no preference for either the
top or the bottom of the film as far as film rupture is concerned, although this may
be introduced by choosing where to compare with experimental data (Creech ef al.,
1998). Recent experimental results Bitton & Lovasik (1998} suggest that film break-up
occurs preferentially near to the bottom and side quadrants of the cornea, and occurs less
frequently near to the top of the cornea. This highlights a shortcoming of our model,
for three-dimensional flow effects, or that conditions on the surface of the cornea or

conjunctiva may play an important role in determining film break-up location (Sharma,
1998).

5. Conclusions

Evaporation can dramatically shorten the life of a vertical film model of & human tear film
even when the evaporation rate appears to be small. This is because the capillarity-driven
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thinning of the meniscus slows down {according to a power law) as time increases, allowing
evaporation to become significant when the film is thinned.

We have also shown that gravity dominates the evolution away from the menisci at
cither eyelid. Gravity also speeds up the thinning at the top of the film in the cases that
we studied. Since BUT tests are normally carried out with the subject’s head held upright
assuming a horizontal gaze, the model indicates a preference for tear film break-up at
the top of the film, near the upper eyelid. Further work similar to that carried out by
Bitton & Lovasik (1998) may indicate whether or not gravity has any major role to play in
determining the location of the tear film break-up.

Our model is a two-dimensional one, and significant three-dimensional flow effects
occur in real eyes. The aqueous tear supply enters from the lacrimal glands at the top, outer
part of the eye, and the tear film drains out at the bottom of the eye near the nose through
the puncta, The boundary conditions applied in this and other two-dimensional models are
therefore caricatures of what really happens near to the eyelid. Further three-dimensional
flow modelling would be extremely valuable,

Another significant step forward would be to propose a model that allows a mobile
aqueous film surface with surfactant transport on its surface; this would allow the
development of a model for eye opening for the whole surface of the tear film. The no-
slip deforming surface assumed in our drainage model and elsewhere (Wong et al., 1996;
Sharma et al., 1998) cannot be used to model tear film formation over the whole eye.
Berger & Corrsin (1974) have demonstrated the importance of surfactant transport in the
short time following a blink. Only with a mobile surface might it be possible to develop a
unified model of tear film formation and drainage.

Finally, we note that the methodology on which the current model is based could be
used to examine fear film evolution in the presence of either an impermeable or a gas-
permeable contact lens. Although a number of serious model complications would result if
a contact lens were present, the results would no doubt be of both theoretical and practical
interest.
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Appendix A: Slip coefficient

In this appendix we estimate the possible effect of a mucus layer that adheres to the surface
of the corneal epithelitm, thus allowing an aqueous tear film layer above it to ‘slip’.

Sharma et al. (1999) developed a physical analogue system to represent the aqueous
and mucus layers in the tear film. Their study suggests that, under some circumstances, the
mucus layer may indeed cause slip for the aqueous layer, thus altering the no-slip boundary
conditions (4) that were used in our model above. We shall investigate slip in the context
of gravitational drainage.

Consider a case similar to that shown in Fig. 1 where 2 Newtonian viscous aqueous
tear film layer of constant thickness s, overlays a Newtonian viscous mucus layer —him <
vy < (. We assume that the mucus layer does not slip on the flat solid surface y = —hpy
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and that the agqueous layer is tangentially immobile at y = k,. We also assume that both
layers are flat, that there is no applied pressure gradient, and that the mucus layer is about
ten times more viscous than and one-tenth the thickness of the aqueous layer (Sharma ef
al., 1999). Using dimensional variables thronghout and identifying quantities in the mucus
and aqueous layers using subscripis m and a respectively, we have

Pattayy + 028 =0 (0 <y < ha) &2y
Umltmyy + Pmg =0 (hyp <y < 0) (52)

with boundary conditions
Un(—hm) =0,  #a(ha) =0 (53)

and interfacial conditions
Un(0) = ua(0),  Umitmy(0) = prauay (0). (54)

Solving (51)-(54), we find that

2
N Y G .\ Awy + Bn (55)
2pta 2pm

where the constants A,, A, B, and By, are given by

8(.“«a,0mh12n - H-mpahg)

= — , (56
: 2ualhmpta + hafim) )
8(haPmhd — Umpahd)
A = — \ (57
" 2pm(Amita + haltm)
h h
B, = By = ghahm(pafta + pmbfim) (58)

2(hmpta + apim)

Let us now define a slip coefficient A in the standard manner by assuming that Aty (0) =
#,(0). This gives
( .Ornhm )
.u_m .

Paby
_ ki
Pa hg

a

(39)

To estimate A we now assume that p, = pm, ibm = 10 fa, ks = 104, and h, = 10 um.
This gives & ~ 10~7 m. The relative importance of slip is measured by the ratio R = A/y,
and, using the y-scale of £, = d = 10 pm introduced in the main body of the text, we find
that

R~ 1072, (60)
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This suggests that including slip arising from the mucus layer is likely to affect the results
by only about one per cent, Sharma et al. (1999) suggested that a mucus/aqueous viscosity
factor of 10 was probably a rather low estimate for a quantity that might be as high as
100. If this were true, however, the slip coefficient would decrease even more. The only
circumstances in which mucus/aqueocus slip might become important are therefore (a) if
the viscosity factor was, in reality, less than 10, or (b) if the mucus layer was a great
deal thicker than 1 pm. Although there therefore seems to be no possibility of slip being
imiportant for the analysis of tear film drainage in human eyes, it may have to be included
for some animal eyes (for example, it has been claimed that the mucus layer in a rabbit eye
may be as thick as 30 pm).

Finally, we note that it is also claimed in Sharma et al. (1999) that the mucus layer
may slip along the surface of the cornea; we have not investigated the consequences of this
possibility. It seems likely, however, that even if the mucus layer does slip, its motion is
likely to be on a significantly slower time scale than the drainage of the aquecus film.




