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Summary. A mathematicel model which describes the functioning of & Goldmann- '
type applanation tonometer is proposed in order to verify the validity of the Tmbert-
Fick principle. The spherical axisymmetric elastic equilibrivz equations are solved
using a Love Stress function Conclusions are drawn regarding the circumstances
under which the Imbert-Fick principlq may or may not be valid

~

1 Imtroduction

Ophthalmologists define the intraocular pressure (IOP) to be the difference
between the pressure inside a human eye and atmospheric pressure. A normal
TOP lies in the range 12-25 mmHg; abnormally high T OP (glaucoma) is
a serious condition that may lead rapidly to blindness. It is therefore vital
to be able to carry out quick and reliable measurements of a patient’s IOF.
A widely-used instruments for this purpose is the Goldmann tonometer, which
consists in. essence of a flat circular tip connected to a spring. The tip is placed
on the centre of the cornea of a topically anaesthefised eye and pushed towards
it by adjusting the spring umnsil the area of the flattened cornes is equal to the
area of the circular tip To determine the JOP, the “I'mbert-Fick principle” is
invoked This states that if the diameter of the tonometer tip is exactly 3.06
mm, then each 0 1 gm force required to produce the fattening (“applanation”)
corresponds to 1 mmHg of intraocular pressure (see [2])

Although the Goldmann tonometer is widely trusted by clinical practi-
tioners, The Imbert-Fick principle is over 100 years old and is the result
neither of detailed mathematical calculations nor even of an engineering
correlation. It assumes that the eye is a thin, flexible hollow sphere and
many have long suspected that, while it is often accurate, it may lead to
inaccuracies for either eyes with abnormally high TOPs {see [7]) or that
are subject to surgery (for example, scleral buckling), Our aim is thus to
propose a mathematical model for the tonometry procedure to assess the
validity the Imberi-Fick principie.
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2 Mathematical Modelling

To develop a mathematical model for tonometry, we counsider the eye to be
linearly elastic hollow sphere subject to atmospheric pressure Pyt at its outer
surface r = a and a pressure equal to Py + JOP at its internal surface r = b
(see Fig 1). The additional tonometer pressure T' is assumed to act over the
region —¢ < § < o and we asstume axisymmetry

The geometry and the axial symmetry of the problem give the following
equations of elastic equilibrium {in spherical cbordinates {r,8, ¢})

o 14 1

570 + - 5gCre + ;[20}1- — Ggo — Opg + cot forg] = Fr | (1)
a 10 1
-0 — A — {90 - )| = Fi 2
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Hexe opr, 099, 0gp and opg denoté the components of the stress tensor while
F. and Fy represent the components of any equilibrating force required.

‘We now consider the boundary conditions. In this study we assume, for
stmpicity, that the normal and shear stresses are prescribed at both r = o
and r = b. We also assume that the equilibrating forces Fj. and Fp in (1)
and (2) are supplied by the eye socket Therefore '

JTB(Q’) = 0) U’r‘r(a) = _G(a)
0-7‘9(6):0: Urr(b):_ int — —‘Pa,t—IOP,
where
| Prt+T0Li<a
o0 = {7 TR

and T denotes the pressure exerted by the tonometer over the contact region

Fig. 1. Mathematical representation of the tonometer problem
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2.1 Model Sohition

Although the theory of the Airy stress function for two-dimensional elastic
problems is well known, it seems to be less commonly appreciated that a cor-
respoading “Love stress function” exists for axisymmetric spherical problems.
Space permits few details, but the key result is that the homogeneous versions
of (1)— (2) are automatically satisfied when ., ug, orr, org, Oo9 and o4, are
defined in terms of a biharmonic function x(r, ) by the expressions in given
in [1] This reduces the problem to the determination of & biharmonic Love
stress function x(r,d) that satisfies the correct boundary conditions. Using
the general form of a separable biharmonic functior, we assume that

oo
x{(r,8) = Z (A,n'r#”“l + By 4 O™ + Dn'f'"+2) P,(cos 8},

n=0

where Ay, Bn, Cn, Dn are constants and B, (cos #) denotes the n** degree
Legendre polynomial. Expressions for o and s may now be obtained and
the boundary conditions may be applied. After a great deal of algebraic ma-
nipulation (MAPLE was used to simplify the calculations) a system of coupled
equations for the A,, B,, Cp and D, may be derived With some effort this
systemn may be solved and the displacements and stresses found; for brevity
we do not show these expressions, which are very long and involved.

3 Results and Conclusions

The accuracy of the model depends on the parameters used. The typical di-
ameter of a human eye is 25 mm ([6]) while the average thickness of the central
cornea is 0 52 mm ([5], [4]) giving ¢ = 0 0125 mm and b = 0.01198 mm. For
a Goldmann tonometer a = gz. We ook Poisson’s ratio to be v = 049, and
used a modulus of elasticity £ = 0 0229 JOP proportioral to the TOP ({5}
The qualitative behaviour of the model when the pressure T exerted by the
tonometer takes different values for the same [OP is shown in Fig. 2 A normal
TOP of 15 mmHg was used. The figure shows*how the external wall of the eye
is deformed when values of T=05T0P, T=10I0P and T =20 JOPF are
applied. We note that when the pressure exerted by the tonometer is egual
0 half of the TOP, the outer wall of the eye is barely deformed; when both
are equal, a flattened region is observed and when the pressure axerted by the
tonometer is two times greater than the TOP, a slightly re-entrant indentation
is present. These results suggest that the Imbert-Fick law is qualitatively valid.
As far as quantitative results are concerned, if both the mathermatical
model and the Imbert-Fick principle wers exactly In agreement, then one
would expect that, for any [OP, the same amount of corneal flattening
should be produced when pressure applied by the tomometer is equal to
the JOP Caleculations made using the model show, however, that this
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T =10P/2

Fig. 2. Qualitative behaviour of the tonometer at different values of T for the same
IOP (Solid line deformed surface Dots- undeformed surface)

is not exactly the case. In particular, for JOPs of about 40 mmHg and
greater, a re-entrant indentation is present. This suggests either that the
model has shortcomings (see below for further discussion) or that the
Imbert-Fick principle is flawed (at least for large I OPs).

It is known from experimental studies that the Imbert-Fick law can
give maccurate results for elevated TOPs. The left-hand disgram of Fig 3
shows the amount of flattened area vs the ratio between the fatsening
force and JTOP for both the Imbert-Fick law and the experimental results
in [3], confirming that the Imbert-Fick law is not universally applicable
The right-hand diagram of Fig 3 shows detailed results obtained from the
mathematical model for different values of the JOP. We observe that the
amount of flattened area varies not only with the ratio of the applanating
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Fig. 3. (Left-hand diagram} Imbert-Fick law compared to experimental results,
(Right-hand diagram) Model results for various 7O Ps
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T =0.5*I0P
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Fig. 4. Relationship between corneal thickness and IOP required for Imbert-Fick
law to be correct

force to the IOP but also displays a dependence on the value of IOP.
We conclude that both the Imbert-Fick law and the mathematical model
require reconsideration.

One solution to the problems that have arisen in the mathematical model
is to assume that the JOP is related to the corneal thickness Fig. 4 shows the
required relationship for various different tonometer pressures (I =10 IOP
and T’ = 05 IOP}. It can be seen that when T' = 1.0 JOP, then for any value
of the TOP a specific corneal thickness exists that renders the tonometer
reading “correct”. Thus the tonometer may be used to measure the JTOP
accurately provided it is modified by a correction factor X (IOP = T/K),
where K is determined by both the ITOP read by the tonometer and the
thickness of the cornea.

In conclusion, a mathematical model of an applanation tonometer has
been proposed. Initial results suggest that the Imbert-Fick law is qualita-
tively valid; For a quantitative point of view, however, the model requires
some modification, especially at elevated IOPs We therefore conclude that
neither our model nor the Imbert-Fick principle can be irusted in every
circumstance. One possibility to correct the model is o take account of the
corneal or scleral thickness, and this provides a simple practical correction
to the model inaccuracies. In reality, however, the results tell us (a) that
the Imbert-Fick principle is Imited in its applicability and (b) that we are
probably sclving the wrong elastic problem. Since the tonometer functions
precisely by flattening a particular region of the cornea, we should solve
a mixed bourndary value problem, prescribing the appropriate radial dis-
placement in the region of contact between the tonometer and the eye and
zero radial stress everywhere slse on the cuter surface of the eye Mathe-
matically, this problem is a good deal harder to solve, and is the focus of
a current study
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