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Determining the Viscosity of a Carbon Paste

Used in Smelting

Preface

In the following case study, the slow viscous flow of blocks of “carbon paste”
is analysed. The paste blocks are essential components of an electric smelting
process by which a variety of ferro-alloys and other substances are produced.
The problem is first proposed in its most general form. A nondimensionali-

sation using typical parameter values of the process then shows that a much

simpler set of equations may be used to analyse the flow After examining
the qualitative details of the fluid motion in various key regions of the fiow,
an asymptotic analysis of a long thin block of paste allows us to develop a
good general understanding of the main principles of slow viscous flow in
paste blocks The theory highlights the key differences between various tests
that are used to determine the viscosity of carbon paste. Finally, some fairly
straightforward numerical anaiysis is used to show that the general problem
is amenable to simple methods; the numerical results also show that in many

cases the “long thin” analysis used earlier can produce remarkably accurate

results.

The work outlined below is part of research that was prodnced during and
after the 1988 European Study Group with Industry, which was held at the
University of Heriot-Watt, Scotland. Some extensions to the work presented
here are suggested as projects for the interested student in section 2.6. Close
links have continued to be maintained between industrial mathematicians
and the ELLKEM ASA, the Norwegian company that originally proposed the
problem. A number of other problems (see [1], [4], and [3]) concerning
various aspects of the electric smelting industry have also been considered in
detail and have led to some interesting mathematical problems.

2.1 Continuous Electrode Smelting

Electric smelting is a popular process for producing a variety of materials
such as ferro-allovs. silicon. and calcium carbide. Heat is provided for the
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Fig 2.1 Schematic diagram of carbon electrode furnace

smelting furnace via substantial (up to 150,000 Amps) electrical currents that
are passed to the heart of the furnace through a carbon electrode. Figure 21
gives the schematic details of the physical arrangement.

As the smelting takes place, the electrode is consumed (depletion rates of
1m per day are typical) and must be replenished A practical way of achieving
this is to produce a continuous carbon electrode immediately above the fur-

‘nace. This is normally done by feeding cylinders of carbon “paste” into the

centre of a cylindrical steel casing (diameter I-2 m) which is gradually heated.
As the paste warms, it flows to fill the cylinder and is eventually “baked” solid
at around 500°C in the region where the current enters the electrode Baking
improves both the strength and electrical conductivity of the electrode, and is
essential for satisfactory current transfer. Electrodes of this type have come
to be called Sgiderburg electrodes after the Norwegian who pxoneered their
development in the early part of this century.

To design an efficient Spderburg elecirode, the viscosity of the carbon

14 b L r 0 . r
paste’” must be known, and this will be the main question that concerns us
here. Traditionallv at the emeltine factary a mambar af cimnla avnacimanta
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have been carried out to determine the viscosity These will be considered
morte in detail later, but basically they involve taking a cube or cylinder of the
heated carbon paste and simply letting it “slump” under its own weight. Mea-
surements of the bulge at the base of the sample are made, and the viscosity is
inferred from the growth of the bulge with time. The industrial practitioners
specifically want to know:

. Which sort of viscosity test is likely to provide the most reliable
answers?

. What size and geometry of paste sample will give the most accurate
results without taking too much time to test?

. How does the prospective duration of each test depend on the physical
parameters?

. What sort of errors may the experiments be expected to produce?

Before we can answer any of these questions, the pature of the carbon
paste itself must be understood. The paste is not a simple one-component
fluid, but consists of a binder (normally pitch or tar} into which is mixed
particles of calcined antbracite (coke). The particles may bhave diameters
ranging from 125 pum to 15 mam, and the particle size range may be varied to
produce electrodes with different electrical, therimal, and strength properties
Experience has shown, however, that to all intents and purposes the paste
may be taken to behave as a single viscous fluid. It is worth mentioning
that there are circumstances for which this is not true, as the paste may
“segregate” in the electrode During segregation the particles clump together
and large regions of the paste consist only of binder Though this may cause
severe problems during the smelting process, it is not our concerm Here; for
more details concerning this interesting subproblem, the reader is referred
to [1]. Regarding the thermal properties of the paste (which is solid at room
temperature), experiments have shown that, at 50-80°C softening takes place
and flow occurs When the viscosity is being measured experimentally, tests
are carried out at a constant temperature. This is convenient for our purposes,
since it means that the thermal properties of the paste need enter into the
problem only as parameters.

As far as the viscosity experiments are concerned; there are three recog-
nised ways of causing a heated sample to “bulge” to allow a viscosity
measurement to be made. These are:

(1) The “plasticity” test: a sample of paste is heated to around 300°C,

placed on a rigid impermeable surface, and allowed to slump under its
..... errmiacdit
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(2) The “velocity test” a metal plate is applied to the top (planar) surface of
the sample and forced to move downwards with a (normally constant)
prescribed velocity

(3) The “viscometer”: identical to the velocity test except that a constant
force is used.

The terminology is used in deference to that standard in the indusiry In
fact all three tests are really viscometers, and no plastic flow in the normal
solid-mechanics sense of the word occurs in the plasticity test. It is also worth
noting that the velocity test and the viscometer test generally take much less
time to complete than the plasticity test.

2.2 Problem Formulation

We fix our ideas by considering a block of paste occupying a region D which
is initially rectangular with height 4 and semiwidth L. As shown in figure 2.2,
the top surface of the sample is denoted by St, the surface in contact with the
rigid plane at y = 0 by S and the (initially vertical) sides of the sample by
S_and Sy.

S

B

Fig 2 2. Geometry and nomenciature of paste block
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The first priority in the analysis of the problem is to determine which
parameters are important and which effects dominate, and we tackle this by
nondimensionalising. We carry this out by scaling lengths with / (thus tacitly
assuming that the paste block has an aspect ratio of order 1), the fluid velocity
g with U where Us is @ representative speed (for example the average
speed of the centre of the top of the sample), the time 7 with a representative
time 7, and the pressure p and the stress tensor T with plUsc/ B, where u is
the dynamic viscosity (to be determined). The Navier—Stokes equations (see,
for example [71) with a gravity body force then become, in nondimensional
variables,

Re[St 'gq, + (g V)gl=—Yp+ Vg~ Re/FD)j,
Vo g=0,

where j denotes the unit vector in the y direction, Here the subscripts denote
differentiation, and as usual the Reynolds, Froude, and Strouhal numbers are
defined by
Re = WP gy o Uso g PU
I gh h
where p denotes the fluid density (assumed known).

We must now consider the relative sizes of these parameters, Since none
of the tests involves impulsive loading, we assume that the Strouhal number
is of order one, so that Us, ~ k/7. Using representative values of £~ 1 m,
Us ~ 1 m/h, p ~ 3000 kg/m?, and assuming that the viscosity is of order
of magnitude 108 Pa sec (although the paste viscosity may vary by orders
of magnitude, the representatives from the factory assured us that this was a
typical viscosity valug), we find that

1
Re=0(107%), Fr=00107.
To lowest order, the nondimensional equations of motion become
Vp=V'qg-aj 21)
vV g=0, 22
where « = Re/Fr. Already, the formidable problem posed by the Navier-
Stokes equations bas been greatly simplified; to a good order of approxima-
tion, the correct equations are simply the slow flow equations with a body
force. The problem must be completed by the specification of suitable ini-

tial and boundary conditions. Assuming that the shape of the paste block is
mnnifind ot + — 1 we have the standard no-slip viscous boundary condition
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ony =0, the sides S and S_ are stress-free, and the boundary conditions
th.c:ut must be applied on the top surface St depend on which test we are
using,

The equations of motion (2 1) and (2.2) held for arbitrary paste blocks,
but may be further simplified if the pressure is eliminated and we work only
in two dimensions. Taking the curl of (2 1) and defining a stream function
¥ (x, y) so that u = 1y and v = —,, the full problem becomes

Vi =0 ((x,) e D),
¥ =y =0 ((x7) €Sp),
T =0 ((x,y)eS8US5),
(D/DD[x — £, D] =0 ((x,y) € S US), (23)

T =0 (plasticity test)
Wy =0 e = 5(f) (velocity test)
Py =0 =p =Ygy = y(f) (viscometer)

((x, y) € S1).

Here D/ Dt = 3/9t + (g V) denotes the standard convective derivative, n is
the unit normal to the boundary, and £(¢) and y (¢} denote a nondimensional
Sp?ﬁd and normal stress respectively. The boundary of the saniple is denoted
by x = £(y, £). As usual in slow flow problems, time enters into the problem
only as a parameter and via the boundary conditions; the body force enters
only via the pressure p in the boundary conditions.

2.3 Simplified Analysis

The full problem in the previous section is too complicated to solve in closed
form, and a numerical solution is required. For the reasons explained above,
however, we first search for some simplified versions of the problem where
theoretical progress may be made.

2.3.1 Corner Solutions

First, we consider the general form of solutions near to a corner Although

o such local analysis is unlikely to answer any of the industrialist’s questions

directly, at this stage any information on the nature of the flow is help-

- ful. Each test may be examined, but, confining ourselyes to the plasticity i
- fest and leaving the other cases as exercises for the interested student, it is

{ easy to show that the local behaviour of solutions may be determined by ;
1 simple separation of variables. Using x and y to denote local coordinates, :
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we find that:
(1) near a top corner (where two siress-free surfaces meet),

1 1 1
u ~ —Zaxy, v éot(x2 + y?“), P~ —an,
(i) near the line of symmetry at the top,
1
w~apry, v~ —zepGl YY), pal=1-26)y,

where B is an arbitrary constant that would have to be determined by a

matching procedure (see, for example [6]) .
(iii) near a bottom corner (where a stress free surface meets a fixed surface),

! v~ —ay? ~~~%rxy
71 —gaxy, Yy, P 3%

6

(iv) near the bottom line of symmetry,
1
i~ abxy, v~ *Emﬁyz, p~a(—1-28y,

where & is arbitrary. Although these expressions for , v, and p may easily
be verified o be solutions to the local problem, evidently they all have the
property that u = Qatx = 0, and thus predict no bulging of the sam'plfz.
To produce the required outward movement of the walls of the sample, it is
necessary to recognise that the flow is dominated by an eigensolution. The
eigenproblemis siimple to pose: near the botiom left-hand corner, for example,
employing local polar coordinates, the equation of motion is

Vi =0 (r=0,0<6=<m/2),
while the boundary conditions are the no-slip conditions
Y=Y =0 ©@=0)

and the zero-stress conditions on the free boundary § = 7/2. To express these
in a convenient form, we note that the stress tensor is given (in dimensional
variables) by
7 P2 pliy U )
T\ mluy Fu) —pt2pyy
and since the outward normal to the free boundary is given by £ = (—1,0),
the stress-free condition amounts to (returning to nondimensional variables)

L LV — e n. =) (8 =x/2)
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The second condition may easily be transformed to polar coordinates to
- give

A !

while the first may be dealt with by differentiating with respect to y and using
the y-momentum equation to eliminate the texm py. This finally Jeads o

Veos — 3rre + 4o +3r:ne =0 (0 = 7/2),

which is the final boundary condition for the homogeneous problem..
Having posed the problem for the bottom comner, the top corner may be
examined in a similar way, giving the problem

Vi =0 (=0, —m/2<6<0),

2
r — iy — =0
Ve =Yoo @ =—n/2 and 6=0),
VYogo — 3rre +dibg + 3r Yo =0

~ Both problems may be solved by standard separation of variables, or
more simply by seeking a solution of the form

W =r*[Acos A8 + Bsin A8 + Ccos(r — 2)6 + D sin(h — 2)6],

where A, A, B, C, and D are constants. Imposing the boundary conditions,
we find that for the bottom corner either A == 1 {giving again that « is zero
along 6 = 71/2) or A must satisfy the equation

tan?(wA/2) = (b — DZ/A2 — 1) (2.4)

It may easily be shown that (2.4) has precisely two real solutions A ~ 0.405
{which must be rejected since it leads to singular behaviour for i at r = )
and A ~ 1 595 Thus an eigensolution with a velocity

lﬁrwi’%

%along ¢ = /2 is possible This suggests that the bulging that takes place
Jn the plasticity test is associated with a free boundary that grows like 1706,
‘Near to the top corner, A must satisfy

tan(mA/2) = A — 2)/(1 — A)?, (2.5)

an equation whose only real zeros are 0, 1, and 2. All three of these sclutions
_ .égive #u = 0on @ = —n/2 and therefore do pot allow bulging. (It is worth
- ipointing out that (2 4) and (2.5) possess infinitely many compiex solutions
1as well as the real ones discussed above. These have not been investigated,
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but almost certainly correspond to the classical “Moffatt vortex” solutions
(see for example [5]) that are typical in slow flow problems).
The conclusions of our local analysis may be summarised as follows.

(i) The behaviour at the corners is dominated by eigensolutions.

(ii) With or without eigensolutions, the boliom corner point cannot move
This is essentially a consequence of the no-slip condition and is in direct
contrast to the inviscid case. (For analysis of the inviscid case see [8].)

(iii) When eigensolutions are included, bulging can take place at the boictom
of the sample but not at the top -

2.4 Special Geometries

Even the simple corner solutions examined in the previous section have
allowed us to begin to piece togethier what happens to a sample of paste
during testing. The top surface initially remains much as it began, and most
of the movement occurs at the bottom of the sample, since bulging occurs at
the corners. To further analyse the process, we consider some special geonie-
tries Though it is tempting to examine the case of a “short fat Tump of paste”,
it may easily be shown that fittle of value can be wrung from this case. Though
the geometry leads to some simplifications, itis clear from the outset that there
will be boundary layers at the edges of the sample, and these are precisely
the regions that inferest us most. Aunalysis of the boundary layers involves
consideration of the original full problem, and thus little progress may be
made.

The prognosis is altogether more encouraging if we consider the other
obvious ligmit of a tall thin sample of paste. Assuming that L/h = € < 1,
we consider the region x > 0 for simplicity and impose symmeiry conditions
on x = 0 (which will subsequently be denoted by §4). Making the obvious
scalings x = ¢ X, u = €U, and § =en, the scaled nondimensional problem
becomes

px = Uzx + € Uyy, (2.6)
' py = vxx + e ityy — ’a, @n
Uy +uvy = 0. (2.8)

Assuming that U = Up + €Uy + €2Us + - and using similar expansions
for v, p, and 77, a regular perturbation solution of (2.6)-(2 8) that additionally
IR e eAleiane TT — mw — D an ¥ = () mav easilv be
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determined. Correct to order 62, we find that

L _
U=—Xvpy —eXvy + ¢ [f6X3(—2ugyyy + goyy) — quil ,
1
v = vy(y, 1) — evi(y, £} + ¢ [EX'Z(goy + o = 2u0yy) + ¢ (¥, t)] ,

— £ 1 i
p= _(U()y +go) + E(_'Uly +g1) + e [EXz(UOyyy - gOyy) + g2y, l‘):] s

wh.ere the functions g, g1, g2, and g3 remain to be determined. Imposing the
free surface kinematic boundary condition gives

(n0): + (novo)y =0 2.9)

to leading order, and another equation relating vo and 7o may be deter-
mined by imposing the stress-free conditions on X = n(y, t) There are
two components of 7 r that must be zero; the x component gives

—go-Fvgy =—g1 — vy =0

correct to (), while the ((e?) contribution relates the functions g, g2,

and gs. The y component yields nothing until we reach the O(e?) terms,
whereupon we find that

4{novoy)y = ano (2.10)

The leading-order solution thus becomes

1
U=—Xvyy —eXv1y + €? |:5X3(voyyy — qu] ,

1
v=1up— €V + e ['Z-XZ(OJ - 3U0yy) + Q’:| >

p = —2ugy — Zev)y + e [XZUOyyy + gz] )

where ng and vy are determined by (2.9) and (2.10). As far as boundary and
initial conditions for the equations for ng and vy are concerned, clearly it
makes sense to specify an initial condition for 5. Also, since (2.10) is of
second order in y, we expect to be able to satisfy two boundary conditions.
The full problem requires that two stress conditions are satisfied on the top
surface of the sample, while two no-slip conditions apply to the bottom of the
sample. Therefore two conditions must be dropped,ﬁ and we may expect there
o be boundary layers at the top and bottom of the sample. Since we want
results that reflect properties of both the top and the bottom of the sample, we
impose va = 0 on y = (0 and one stress condition on the sample top
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2.4.] Further Analysis of the Velocity Test

Now that the framework for analysing the long thin paste block has been
established, we detive some cesults. For the velocity test, where v is specif.led
on the top of the sample, some progress may be ma(éle with the govermng
equations for the period soon after the experiment begins. Expanding vo and

np 1D pOWeETs of ¢, assuming that v = —VT‘ ony = 1and no(y, 1) =0 (a'n
initially straight sided block) the solution satisfying vo = 0 ony = 0 1s

given by
to = 14 S8y — 2y +e) + o™,

1 o
vp = §ay2 -y (VT + g)
2
+I—;—i [ocy(Zoty2 —~3ay 4o — 24Vry + 24VT)] + 0.
Three separatc cascs are identified (as shown in figure 2.3)%

(i) For Vy > a/8, both the top and the bottom of the sample wi]l_ bulge as
the top plate 1s pushed down. The free boundary is linear m 7, an_d
the horizontal velocity on the top and the bottom of the sample is

pro'portional 1o X.

-

(i) (ii) (ift}
‘ = V.. <o/8
V> /8 Vi o8 T
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(ii) When Vy = /8, the imposed velocity is just large enough to ensure
that o = 1 at y = 1, so that the horizontal velocity on the top surface
is zero.

(i) When Vr < 0/8, the sample “pecks” as the top surface moves towards
the y axis, while the bottom surface moves away from it.

Near y = 0 and y = 5(t) the analysis is not valid, since boundary layers
are present; nevertheless the outer solution may still be used to predict the
viscosity from the bulging. Evaluating 7o on y = 0 and restoring the dimen-
sional variables reveals that, if the top plate moves with speed Uy and the
maximum semiwidth of the sample at any time is BL, say, then the dynamic
viscosity is given by

_ h2pgt
T 8(h(B — 1) — Usol)

I

2.4.2 Analysis of the Viscometer Test

The only change required to examine this case for small ¢ is to impose the
boundary condifion —po + 2ugy = y(t) as well as v = Qony=0.Fora
constant load ¥ () = —y, say, we then easily find that

i
=1+ —ay+a)+ 0@,

1 5y
vp = g0y 4(}j+oe)

I3
+§g[ay(ay2 —3ay + 30 — 3yy -+ 6} + 0(1‘2).

The predicted bulge is therefore once again linear in y, though no necking
of the sample can occur unless y < 0. (Although such an experiment would
be rather hard to set.up, there is no reason why the viscosity could not be
measured by forcing the top of the sample to rise and measuring the neck-
ing.) For a maximum sample semiwidth BL and a (dimensional) load I',
redimensionalisation gives the result corresponding to (2- 11) as

(T +hpg)

aB-1) @12

Actually, some exira information is available here, since in this case the
speed of the top of the sample is also unknown. The possibility thus arises
of estimating the viscosity from the speed of the plate. Assuming that ng ==
11 A fae s 2o 1 and enlvine (2,93 and (2 10) for small time, we find, on

211 -
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imposing the conditions that vp = O on y = 0 and —po + 2ygy = —y On
y = s5(f), that

1
v = gayz + %[—y —as(®)].

Insisting that vg = § on y = s(¢) thus gives an ordinary differential equation
for s(f), which has the solution
. 2ye Vi
s(t) = —— -~ i
a2y —ae 7V
A redimensionalisation now shows that the effective viscosity is given in
terms of s by
I't ht(C + hpg/2)
.. IR
P = Tlogi(2hT + hogs)/s(hog +21)] Atk —5)

2.4.3 Analysis of the Plasticity Test

The plasticity test involves a further complication: there i.s -no r_eason why
the top surface of the sample should remain flat However, it is fairly easy .to
show that, to leading order, the top surface does remain parallel to the x axis
Small-time expansions then show that

=1+ 2a-n+ gt—%(fZay +ay? —4D)+ 0,
ny = 4 32

i i 2
v = %05)’2 - %,X + 56_[“2 —3a?y +o?y* +24aD)} -+ O,

where D is a constant that could be obtained by going to higher order For,
. therefore, the viscosity may be estimated using

. _hegt 213)
aB -1

2.4.4 The Boundary Layer at the Base of the Sample

The results (2.11), (2.12), and (2.13) give us our first concrete formulae,
and, as we shall see later, are capable of giving accurate predictions Before
proceeding, however, some account must be taken of th?, boundary lajgzel“s
at the top and bottom of the sample. A}though for practical purposes it 18
probably not necessary to give all the details of the boundary szlyer problem,
sood mathematical practice demands that we should at least satisfy ourselves

+ Cdce Tarraren tha
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full problem applies, and thus a numerical solution is required in general.
Some progress may be made, however, with the small-time problem. Con~
sidering by way of an example the boundary layer at the base of the sample
in the velocity test, we exploit the facts that the boundary S remains vertical
fort < 1 and the outer velocity is known to be

vp = —X [éfxyz + Ky] + 0@y (K=-Vr—a/8).

Tntroducing a stream function W that has been scaled (in addition to y} with

¢ and further setting ¥ = —K¥ X + @, the matching problem becomes, to
leading order,

Vio =0 @©=<X<1, 0<Y <)
with boundary conditions
O=0xxy (X=0)
Byy - bxx =0, Pyxx+30xyy=0 (X=1),
d=0, Py=KX (¥ =0

and matching condition ® — 0 as ¥ — oc. A symmetrical separation of
variables solution that is suitably behaved as ¥ — oo is given by

& = exp(—AY)[BX cosAX + CsinAX],

while the two conditions on X = 1 mean that there can only be non-trivial
solutions for the constants B and C if

A+sinAcosd =0 (2.14)

The expression (2.14j is familiar in both elasticity and slow viscous flow;
it is the Papkovitch—Fadle equation, and many of its properties are known.,
In particular it possesses an infinite number of complex solutions which are
given, for large k&, by

i i1
Ap = (k - -i) T+ 51‘ log(dkn) + O(ogk/k).

Although it is possible to completely determine the coefficients of the
ejgenfunction expansion so that the conditions at ¥ == 0 are satisfied, it is
not a trivial matter, since the problem is a so-called “non-canonical” one.
Biorthogonal functions and collocation must be used, the net result being an
infinite system of linear equations for the coefficients, which may be made
diaoamally dominant nrovided sufficient care is taken, Of most importance is
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the fact that, though the minutiae are complicated (see, for example [97), the
details may all be taken care of

2.5 Numerical Analysis and Results

The analysis that was carried out on the Navier—Stokes equations zfllow_s the
numerical problem for general blocks of paste (o be considerably simplified.
Instead of solving a fully time-dependent nonlinear problem, we now have
to solve what amounts to a fourth-order Jlinear time-independent equation of
motion. The position of the free surface may then be advanced using the kin'e—
matic condition. Space does not permit any but the barest numerical det.alls
(a full discussion may be found in [2]), but essentially the most convenient
way to solve the problem is to use the finite-element method to solve the
partial differential equation, followed by a Lagrangian method to advance the

boundary.

2.5.1 Finite-Element Method

To apply the finite-element method, the equations are most conveniently

written as

o1tz + 012y =0, Gaxtomy =0, uxAvy =0, (2.15)
where

o1 = —p+ 21y, op=o0n =uy+vs, on=-—ptivy.

The boundary conditions are
iy =0 (0r,y) €8p), Tr =Ty =0 ((x.¥) €S54,
w=T,=0((x,y) € Sa)
and, for {(x, ¥) € Sr,
Ty=Ty,=0 plasticity test
w==0, v=235()  velocity test
u=0, T, =y viscometer test,

where the surface tractions 77 and 73 are given by
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are approximated by polynomials one degree higher than those used for the
pressure. Using quadratic and linear polynomials respectively, we choose
the coefficients of the polynomials to satisfy the weak (integrated) forms of
(2.15). (Details of the numerical procedures may be found in standard text
books on finite and boundary elements.) In this way the whole problem may
be reduced to a system of linear equations which may then be solved by
standard methods. Once the solution has been computed at a particular time,
the Lagrangian equations

dx dy

ar " oa T’
are integrated in an explicitly discretised form to advance the boundary,
whereupon the whole process begins again. The schefne constitutes a quick
and accurate method of solving the full problem. Although for simplicity
only two-dimensional cases are considered here, the method could also be
extended to three dimensions with little extra effort.

2.5.2 Resulis

Numerical results are shown for a typical paste block of unit aspect ratio in
figure 2 4 The calculations were performed using 100 elements (giving 231
nodes and 528 variables), and numerical tests suggested that this gave resulfs
with a relative error of about 10~*. The results display qualitative features that
are familiar to Elkem from their experiments: in the plasticity test there is a
pronounced bulge near to the bottoin of the samyple, whilst the bulging is more
evenly distributed along the lateral boundary of the sample in the viscometer
In both the plasticity test and the viscometer, the top edge of the boundary
nearest to the free surface tends to become slightly elevated This cannot of
course happen in the velocity test, where once again the bulging seems to
take place over most of the free boundary rather than in a local area. It is of
interest to compare the nulfierically calculated results to the predictions of
(2.11), (2.12), and (2.13). In all of the results given below, the paste samplé
had a viscosity of i, = 10% Pa sec and a density of 3000 kg/m>. The gravi-
tational constant g was taken to be 9.8 m/s2, the paste block was assumed to
be 1 m high, and the velocity scale was taken to be 1 m/hr. For the velocity
and viscometer tests, Vy and ¢ were both taken to be 1. Table 2.1 shows

ax ay dx dy results for the paste block shown in figure 2 4. The time increment is denoted

1 = o an + Ti2a L= Ln, + 2o by n, which varied for different tests; this reflects the fact that each method

1 being in a direction normal to the boundary. Dividing the flow region. I into of viscosity _measurement ha}s its own characteristic experimental time For
. 43223k mmdnn tha valacify somnonents the results discussed below. it was found aporooriate to use time increments
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b Y

(a) (b)
Fig. 2.4 Numerical results for paste block of unit ‘aspect ratio (100 elements) (2)
viscosity test, (b} plasticity test, (c) viscometer

Table 2.1. Viscosity Ratios pt/itp Predicted by Asymptotic
Model in the Case € =1

=

Velocity ~ Plasticity Plasticity  Viscometer ~ Viscometer

Test (Bl) Test (BD  Test (Ht) (B (Ht)

0430 1.637 1.170 1299 1.199
é 0.402 16635 1170 1301 1202
3 0373 1674 1171 1302 1206
4 0.347 1.683 1.171 1.304 1210
5 0325 1.693 1171 1.307 1.213
6 0.305 1703 1172 1310 1.247
7 0.288 1714 1172 1313 1221
8 0.273 1725 1173 1317 1225
9 0.259 1738 1174 1322 1.230
10 0.247 1.751 1175 1.327 1.235

of 0.02 h, 0.2 b, and 0.07 h respectively for the velocity, plasticity, and vis-
cometer fests The table gives values of [ p (which should take the valule
1 if the theory is perfect) for each experiment, i1 having been calcul.?ted via
the formula discussed previously. Results (labelled “Ht”) are also given for
cases where the height of the sample is measured instead of the b.ulge. -
Table 2.1 compares exact resulis with a theory that is valid in the limit
¢ —> 0O for the case € = 1, and so one would not expect there to i?e an'y
agreement. Nevertheless, all of the results indicate that the predicted v‘1scos1—
ties are at least of the correct order of magnitude, Although the velocity test
predicts viscosities that are incorrect by factors of 24 (depending on when
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Table 2.2. Viscosity Ratios u/ i, Predicted by Asymptotic
Model in the Case e = 1/10

n Velocity  Plasticity  Plasticity Viscometer Viscometer
Test (B)  Test{BI)  Test (Ht) (Bl (Ht)
1 0.956 1.169 1.009 1.090 1.014
2 0829 1166 1010 1.091 1023
3 0.728 1.162 1023 1091 1032
4 0.646 1.159 1.029 1.091 1.041
5 0.578 1.156 1.036 1.091 1.050
6 0.521 1.153 1042 10681 1058
7 0472 1150 1.048 1.091 1.067
8 0.430 1.148 1.053 1.091 1075
9 0.393 1.145 1.059 1.091 1.083
10 0.361 1.143 1064 1.090 1091

accurate results, especially when the height of the sample is measured rather
than the-bulge.

Table 2.2 gives resulis when the aspect ratio of the sample is 10, so that
the parameter € = 0.1 is truly small. Here we may anticipate that the theory
will be much more accurate, and this expectation is borne out. Once again,
the velocity test seems to be the least accurate experiment, though for small
times it gives acceptable results. Each of the other tests gives results that are
accurate to a few percent, though once again it seems that it is slightly better
to measuie the height of the sample rather than the bulge.

2.6 Final Conclusions

‘What has our modelling achieved? We began this study with a number of
clearly spebif‘%ed goals, so let us review these one by one.

First, we tiow have a much improved physical understanding of how the
process works. The type of bulging that may be expected for each test, “neck-
ing” and other effects may now all be explained in terms of a clearly defined
mathematical framework.

The key nondimensional parameters have been identified- the Reynolds
number is so small that inertia cannot be of any importance, and the process
is driven by the parameter

Re gh’p

Fr wule
By investigating obvious alternative nondimensionalisations using the
velocity and loadine of the ton nlate. timescales could be determined for
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each test {details Iéft to the reader). In pasticular, the velocities and loadings
that equalise the time taken for each experiment to be performed could be
determined.

After examining the results for the tall thin paste block, the practitioner
should have a good feel for how changes in the experiment are likely to be
reflected in the results. Examining the general properties of the model in this
simple case shows how the results are likely to change if given parameters
are altered; the results also show that acceptable results may be obtained even
when the theory is stretched beyond its reasonable lirnits.

Finally, the original numencal problem has been vastly simplified. The
slow flow probiem that must be sofved is so much simpler than the full Navier—
Stokes problem that three-dimensional time-dependent computations are a
real possibility; in any case the theory generates a number of test cases that
may be compared with numerical codes that may be developed.

Further extensions to the work presented above are left to the reader, Fufure
projects could inchude:

« It was assumed above that all of the tests are carried out at a constant
temperature. But there is also interest in the “unsteady” temperature
problem where a paste sample is put in a hot oven and flows as it
heafs up How would this change the full problem, and what simple
cases could still be solved in closed form to provide test cases for the
numerics?

« Whathappens for a cylindrical block of paste? Does the change to sucha
geometry alter the qualitative flow of the paste? (This might be possible
since the sample now only has sharp-angled sides atits top and bottom. )

« Suppose that an “instant” test was required where the sample was given
a impulse (hit with a hammer, for example). How would this change
the full problem? Could this experimental methodology reasonably be
expected to give accurate results more quickly than the standard tests?

o Asdiscussed above, itis known that under some circumstances the paste
“segregatés” and may no longer be regarded as a uniform mixtire of
pitch and fines. Given an initial segregation distribution, how would the
modelling be affected?
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