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A REVIEW OF LINEAR AND NONLINEAR CAUCHY
SINGULAR INTEGRAL AND INTEGRO-DIFFERENTIAL

EQUATIONS ARISING IN MECHANICS

J.A. CUMINATO, A.D. FITT AND S. MCKEE

ABSTRACT. This study is primarily concerned with the
presentation of a review of a collection (which could be
regarded as a “test set”) of linear and nonlinear singular
integro-differential equations with Cauchy kernels, all of which
arise from practical applications in Applied Mathematics and
Mathematical Physics. The main objective of this review is to
provide numerical analysts and researchers interested in algo-
rithm development with model problems of genuine scientific
interest on which to test their algorithms.

Brief details of the methodology of derivation of the equa-
tions are provided and, where possible, existence, uniqueness
and asymptotic results are discussed. References are also
given to other studies that have dealt with similar problems.
The importance of carrying out the necessary mathematical
analysis is emphasized for one class of problems where it is
shown that the solution abruptly ceases to exist as a param-
eter is varied. It is further shown that developing asymp-
totic estimates for the behavior of the solutions is very often a
crucial component in the design of effective numerical meth-
ods. The importance of regularization is discussed for a class
of problems, specific conclusions are drawn and recommen-
dations are discussed. An appendix contains further related
problems that may be used for further comparison purposes.

1. Introduction. Many practical problems in elasticity, crack the-
ory, wing theory and fluid flow give rise to singular integral equations
with Cauchy kernels (see, for example [3, 37, 61]). For linear equa-
tions, a great deal of theory exists. Indeed, Muskhelishvili in his famous
book [77] presents a thorough analysis of linear singular integral equa-
tions (LSIEs) providing closed form solutions. For this class of prob-
lem a considerable number of numerical techniques also exist. Schemes
based on Galerkin methods [39, 44], collocation methods [14, 16, 17,
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20] and quadrature methods [25, 64] have proved successful and effi-
cient; in all cases the necessary convergence theory is reasonably well
developed.

For singular integral and integro-differential equations with Cauchy
kernels that are nonlinear (referred to henceforth as NLSIEs and
NLSIDEs respectively), matters are very different, and little has been
published. This is undoubtedly because the theoretical difficulties
posed by such equations are immense. No general well-posedeness
results appear to exist; closed form analytic solutions for particular
problems are very much the exception rather than the rule; and
smoothness results and asymptotic expressions are not always easy to
obtain. Consequently, such equations have also received little attention
from numerical analysts and algorithm designers.

The main goal of this study is to review mechanics problems that have
led to (in particular nonlinear) equations with Cauchy kernels. The
results may be regarded as a collection of model problems (all of which
come from practical problems, and are therefore of scientific, as well as
theoretical interest) that might serve as a tool for researchers interested
in the development and analysis of numerical methods for NLSIEs and
NLSIDEs. Some illustrative examples of successful numerical methods
will also be presented.

Other examples of collections of test problems have proved to be
important to the numerical analysis community in the development
of efficient and accurate algorithms. Perhaps the best known are
the Harwell-Boeing sparse matrix test problem collection [19] and the
netlib collection of linear programming problems [34]. The test sets of
Hock [42] and Moré [75] provide well-known examples of a collection
of nonlinear problems for nonlinear programming and unconstrained
optimization. As far as the numerical solution of ordinary differential
equations (ODE’s) is concerned, test problems made a great impact on
the development of robust code for their solution. Two of the most
famous test problem collections for ODE’s are the 75 test problems in
Hull et al. [43] and the test problems in Krogh [65]; it is no exaggeration
to say that one or both of these problem sets have been used to test
almost every ODE code written since their appearance.

Hull’s and Krogh’s collections are designed to test particular aspects
of ODE codes and contain so-called “toy problems” as well as realistic
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problems such as the five-body problem. The collection presented in
this paper is different in that it is formed only from problems that arise
in application areas.

The development and analysis of numerical solutions for the problems
that appear in this collection is an important challenge to all numerical
analysts. We follow the style of Moré’s presentation [74] in that we
provide details of the origin and the problem that each equation pur-
ports to model. Although we do not fully derive every equation, each
is posed in its most appropriate form, complete with boundary condi-
tions, typical parameter sizes (where available), any existing analytical
results such as asymptotic expansions and, where appropriate, details
of techniques that have previously been employed for its numerical so-
lution.

As we shall demonstrate, the different properties of different types
of equation can have a large influence on how best to solve them.
It will also become clear that, in many cases, successful numerical
solution of such equations is not possible unless some theoretical work
is carried out as well. In particular, it is often crucial to determine
the asymptotic behavior of the solution at various key points in the
solution domain; in addition to helping with numerical aspects of the
problem, asymptotic analysis of this sort can also influence one’s choice
of regularization (where appropriate) and warn of potential difficulties
that might be inherent in the problem. The crucial dependence of
one’s choice of numerical scheme on the asymptotic details of the
solution also indicates that it is extremely difficult to design widely
applicable methods for NLSIDEs; often an ad hoc approach is the only
way forward.

The ten problems presented below are arranged roughly in order
of increasing numerical difficulty, though for such problems relative
difficulty must, to some extent, be a matter of opinion. The collection
also performs the dual function of indicating what sort of problems one
might be able to solve in closed form and the current state of theory
regarding existence and uniqueness for such equations.

2. Previous work.

2.1 Linear singular integral and integro-differential equations. In re-
cent years, the theory as well as the numerical solution of linear Cauchy
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SIEs has attracted the attention of a number of researchers, and con-
siderable advances have been achieved in those areas. From a theo-
retical point of view, the books by Muskhelishvili [77], Gakhov [33]
and Kravchenko and Litvinchuk [63] present a thorough analysis of
the linear problem, providing closed form solutions. With regard to
numerical solutions, a number of numerical techniques exist based var-
iously on Galerkin methods, collocation methods, quadrature methods
and spline approximation methods. Many papers study Galerkin meth-
ods for linear SIEs with constant coefficients [38, 39, 41, 44] as well
as with variable coefficients [22]. Convergence in the L2 norm is ob-
tained. Superconvergence results are also available for the Galerkin
method for calculating linear functionals of the solutions of a Cauchy
SIE, see [40]. The collocation method was extensively studied by El-
liott in [20, 23] for the case of a general linear SIE of the form (1)
below, where the function b(x) is such that there is a Hölder continu-
ous function q(x) > 0 with B(x) = q(x)b(x) a polynomial of degree m.
Convergence rates were obtained in both the L2 and uniform norms.
Elliott’s methods were based on collocation using the zeros of a class
of orthogonal polynomials derived from the coefficients a and b. Col-
location using the zeros of the first kind Chebyshev polynomial was
investigated in [8] and further in [16], where convergence in the uni-
form norm was proved and convergence rates given. Collocation on
the Chebyshev nodes simplifies the numerical method but the zeros of
the orthogonal polynomial associated with the SIE are sometimes very
difficult to calculate. Quadrature methods have been proposed by [26,
46, 90] to solve the general variable coefficient LSIE (1). The analysis
of convergence of collocation-quadrature methods is presented for in-
stance in [53] (see also [47]). More recently Berthold and co-workers
[5] devised a fast algorithm for the quadrature method which permits
the solution of the linear system arising from the method in O(n logn)
operations. The uniform convergence of this algorithm was presented
in [54]. Spline approximation methods were studied in [24, 35, 36,
73]. The approximation of SIEs using splines does not seem to be very
popular, perhaps because the resulting integrals are very difficult to
calculate exactly and hard to evaluate numerically. The convergence
analysis is even harder and only a few special cases seem to have been
discussed in the literature.
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For many of the cases discussed above the convergence theory is
reasonably well developed. Junghanns and Silbermann [59] presented
a modern mathematical account of the above-mentioned numerical
techniques together with their convergence analysis, for the case of
the linear Cauchy integral equation

(1)
a(x)φ(x) +

1
π

∫
−

1

−1

b(x)
t− x

φ(t) dt+
∫ 1

−1

h(x, t)φ(t) dt = f(x),

x ∈ [−1, 1],
where a, b, f and h are known functions and φ is unknown (see also
more recent work, e.g., [55, 60]). Chakrabarti and Vanden Berghe [11]
introduce an approximate method by expanding the unknown solution
as a sum of singularly weighted well-behaved functions. Most recently
Manam [71] produced a complete analytic solution to a particular
singular integral equation involving a logarithmic as well as a Cauchy-
type singularity.

Considerably fewer papers deal with either the theory or the numer-
ical solution of LSIDEs. It appears that, for this class of equations,
research has been concentrated on special cases, like Prandtl’s equa-
tion for which there are some papers see, for instance, [9, 10, 45, 72].
Another class of linear singular integro-differential equations is studied
in [31]. Spline collocation methods for LSIDEs were considered in [85].

2.2 Nonlinear singular integral and integro-differential equations. As
has already been pointed out, not a great deal has appeared for either
NLSIEs or NLSIDEs.

One type of NLSIE that has previously been studied in some detail
is the Nekrasov equation ([97]). A number of studies have derived
models that reduce to such equations; in particular, a model for
ploughing free surface flows analyzed in [93] solved the governing
NLSIE using collocation to reduce the problem to a system of nonlinear
transcendental equations which were then solved using the Powell
hybrid method [83] with an exponential grid. The Nekrasov equation
was also solved numerically in [12] using high-order quadrature rules;
the existence of positive numerical solutions was also proved.

An NLSIE arising from a formulation of the problem of flow seepage
through a dam was studied in [50]. Collocation and Gaussian quadra-
ture were employed to solve an equivalent equation numerically using
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Newton’s method for the case where the dam shape function was piece-
wise smooth, and in this case it was shown in [49] that convergence
analysis of the numerical method was possible (the computational as-
pects of the algorithm were further investigated in [51]). Other nonlin-
ear integral equation studies by Junghanns and his co-workers include
[56, 58]. Most recently this author studied (see [52]) the optimal
control of a parameterized family of nonlinear Cauchy integral equa-
tions. Collocation methods for NLSIEs were also investigated in [56,
57] where the results of [60] were used to generate numerical schemes.

Amer (in [1], see also [2]) produced sufficient conditions for the con-
vergence of the modified Newton-Kantorovich method for the solution
of a certain class of nonlinear singular integral equations.

Even less has appeared on NLSIDEs. Ladopoulos (see, for example
[66] where there are also other references to relevant work) has devel-
oped new collocation-approximation methods for NLSIDEs in a Banach
space setting; he has been able to demonstrate the existence of solu-
tions to the resultant nonlinear system. This and related work may be
found in [67]. Another author to tackle NLSIDEs is Wolfersdorf [98].

3. Problem review. Our problem collection (“test set”) is pre-
sented below. Each of the problems in the set possesses distinctive
characteristics and poses different numerical, asymptotic and analyt-
ical challenges. Any singular integro-differential equation solver that
performs well on all of the test set problems will indeed be a powerful
tool. Details of some other related problems that might also be used
for testing purposes are given in Appendix 1.

P1 Stewartson’s lifting line equation. Our first problem concerns
Prandtl’s “lifting line” model for a wing. If a semi-infinite wing of
constant chord is replaced by a straight line L parallel to the wing
leading edge, many of the key features of the flow may be captured
by assuming that the circulation Γ is a function only of the distance y
along L. By Kelvin’s theorem, a trailing vortex sheet must exist behind
L; using standard potential flow arguments (see, for example [84]) the
strength of the trailing vortex may be determined in terms of Γ. An
application of the Joukowski hypothesis then yields a singular integro-
differential equation for Γ(y). After recasting the problem slightly to
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replace the unknown function Γ(y) by S(x), the “lifting line” equation
was derived in [89] in the form

(2)
1
π

∫
−

∞

0

S′(t)
t− x

dt = S(x), x > 0

subject to the boundary conditions S(0) = 1, S(∞) = 0. This first
order constant-coefficient equation (which also occurs naturally in the
theory of elasticity: see for example [61, Section 32]) is posed over a
semi-infinite range, and successful numerical methods must therefore
deal correctly with “contributions from infinity.” Alternatively, the
equation may be transformed to a finite range, though in general this
will introduce non-constant coefficients.

The equation is linear, but serves as a good test case for nonlinear
codes as it provides one of the very few instances where practically
all of the important properties of the solution may be determined.
Stewartson [89] obtained asymptotic expansions for small and large
x in the form

S(x) ∼ 1 − 2
(
x

π

)1/2

− 4
3

(
x

π

)3/2(
log 4x+ γ − 11

3

)
+Oρ

(
x

π

)5/2

, as x→ 0

S(x) ∼ 1
πx

+
1

(πx)2
(γ +log x)+

1
(πx)3

(
2(log x)2 +4γ log x−1− 4π2

3

)
+ · · · , as x→ ∞.

(Note that here Oρ means that the order includes an unspecified power
of log x, and γ = 0.5772 . . . , is Euler’s constant.) Using the Wiener-
Hopf method (the solution may also be determined using the methods
developed in [95]; see the Appendix for further details), Stewartson
also found the closed form solution to (2), which is

S(x) =
1
π

∫ ∞

0

e−tx

(1 + t2)3/4
exp

[
− 1
π

∫ t

0

log θ
1 + θ2

dθ

]
dt.

Numerical values of this solution are displayed in Table 1.
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TABLE 1. Numerical values of solution to the lifting line equation.

x 0.0 0.2 0.4 0.6 0.8 1.0 1.2
S(x) 1.0 0.564 0.438 0.361 0.308 0.267 0.237

x 1.4 1.6 1.8 2.0 3.0 4.0
S(x) 0.212 0.192 0.175 0.161 0.113 0.086

Some further discussion of P1 is warranted. We note that, though
(2) is a first order singular integro-differential equation, it requires two
boundary conditions. This feature is common to equations of this kind,
and it is worth examining a little further. To simplify matters, consider
the much more tractable first order equation

1
π

∫
−

1

0

S′(t)
t− x

dt = 1.

Inverting this equation using standard theory (see, for example [77]),
we find that

S′(x) = −
√

1 − x

x
+

C√
x(1 − x)

and thus

S(x) = −
√
x(1 − x) + (C − 1/2) arcsin(2x− 1) +D

where C and D are arbitrary constants. A number of choices are now
possible: we could choose to specify S(0) and S(1), in which case we
find that C = 1/2 + (S(1) − S(0))/π and D = (S(0) + S(1))/2. In
this case, however, for almost all choices of S(0) and S(1) the solution
will have infinite gradient at both x = 0 and x = 1. Alternatively, we
might choose C so that the gradient of S is zero at either x = 0 or
x = 1 and specify either S(0) or S(1). Many other cases may easily be
examined and enumerated, but the general message is that an nth order
singular integro-differential equation normally requires n+1 boundary
conditions, one of which may often usefully be regarded as a regularity
condition.

Note that, for Cauchy integral equations, the notions of “order” and
“required number of boundary conditions” are intimately linked to the
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related notion of “index”. In this study, when we describe an equation
as being “of nth order”, we simply mean that the highest derivative
(whether appearing under the integral sign or not) has order n. The
statement above should therefore be regarded merely as a “helpful first
iteration” in deciding how many boundary conditions are required. For
more complicated equations and kernels, only a detailed examination
of the index can guide us to the proper specification of boundary data
(for more details see [33]).

P2 Thwaites’ sail equation. Thwaites [91] considered the flow of an
inviscid incompressible fluid past a two-dimensional flexible inelastic
membrane (see also the earlier study by Voelz [96]). By assuming that
the sail deflections were small, and carrying out a force balance on
a sail element, Thwaites expressed the unknown vortex distribution
strength that corresponds to the disturbance produced by the sail
to a unidirectional potential flow in terms of the pressure difference
across the sail. This allowed the problem to be posed as a single
nondimensional equation for the deflection S(x) of the sail in the form

(3)
1
π

∫
−

1

0

S′′(t)
t− x

dt = λ(α− S′(x))

with boundary conditions S(0) = S(1) = 0 and S′′(1) = 0. Here α
denotes the (small) angle between the sail and the wind and the key
nondimensional parameter is

λ =
2ρU2c

T

where ρ denotes the density of the free stream, T (N/m2) is the sail
tension per unit length, U is the speed of the oncoming free stream and
c is the sail trailing edge position. As in P1, we note that this second
order equation requires two boundary conditions and a “regularity
condition” which in this case is the Kutta condition S′′(1) = 0; this
ensures that the flow is smooth at the trailing edge of the sail.

Although the Thwaites sail equation is linear, it is second order
and is posed over a finite range. For this reason, no exact solutions
are known for nonzero α (the method of [95] is only applicable to
constant-coefficient equations posed over a semi-infinite range, and
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attempts to transform P2 to a semi-infinite range inevitably introduce
nonconstant coefficients). Some approximate solutions suitable for
numerical verification purposes may be determined in asymptotic cases
such as the limit of large tension (λ = 0) when the leading-order
solution is S(x) = 0 and a regular perturbation in λ yields useful results.
In some sense the equation also resembles an eigenvalue problem, for
it can be shown that some solutions also satisfy S′′(0) = 0. In these
cases, the flow is smooth at the leading edge of the sail as well as at
the trailing edge, and the lift on such sails is thus zero. A further test
for numerical schemes lies in the fact that it soon transpires that for a
given α, solutions may be possible for more than one value of λ.

It should be pointed out that Thwaites [91] did not pose the problem
in quite the concise form of (3) but chose to transform the problem to

(4) Ψ(θ) + λ

{
− 1

2π

∫ θ

0

sin2 ξ

∫
−

π

0

Ψ(φ) dφ
cos ξ − cosφ

dξ

+
1
4π

∫ π

0

sinϕ
∫ ϕ

0

sin2(ξ)
∫
−

π

0

Ψ(φ)dφ
cos ξ − cosφ

dξ dϕ

}
+ λ

(
3π
8

− θ

2
− sin θ

2

)[
1
π

∫ π

0

Ψ(θ) dθ
]

= λ

(
3π
8

− θ

2
− sin θ

2

)

where the parameter α has been absorbed through the transformation
S′(x) = αΨ(x). Thwaites then proceeded to solve (4) using an
approximate method; though this gave acceptable results (3) may also
be solved directly using a range of techniques.

P3 Steady flag equation. A two-dimensional sail under zero tension
with one end free and with nonzero bending stiffness may be regarded as
a flag or pennant. By performing a force balance in a similar manner
to that carried out in P2 and relating the pressure difference to the
strength of the vortex sheet created by the flag, it is possible to derive a
single equation for the shape S(x) of a flag in a wind of small angle α to
the x-axis. It is shown in [82] that S(x) satisfies the (nondimensional)
equation

(5)
1
π

∫
−

1

0

S′′′′(t)
t− x

dt = κ(S′(x) − α)
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where

κ =
2ρL3U2

γ
.

Here L denotes the length of the flag, ρ and U are respectively the
density and speed of the oncoming flow and γ is the flexural rigidity
(kg m2/s2) of the flag. The flag may be regarded as being either
clamped (zero slope) or “hinged” (zero bending moment) at the flag
pole to which it is attached. Suitable boundary conditions for (5) are
thus S(0) = 0, S′′(1) = S′′′(1) = 0, the standard Kutta condition
S′′′′(1) = 0, and S′(0) = 0 (clamped flag), S′′(0) = 0 (hinged flag).

Equation (5) is also linear, but it requires numerical techniques that
are different from those that may be appropriate to P1 and P2, for not
only is it a fourth order equation, but it is posed on a finite range. As
far as numerical comparisons are concerned, the equation for the hinged
flag has the obvious solution S(x) = αx, and though no closed form
solutions are known for the clamped case, a number of easily-analyzed
asymptotic limits are available for comparison purposes. The numerical
solution of (5) was carried out using an ad hoc finite difference method
in [29]. Though the computed solutions appeared to be physically
realistic, no error or convergence analysis was given and much more
accurate and efficient numerical schemes almost certainly exist.

P4 Childress slender wake equation. Steady, two-dimensional solu-
tions of Euler’s equations that contain closed regions of constant vortic-
ity were studied by Childress [13]. In particular, he considered the flow
of an inviscid incompressible stream (with density ρ and undisturbed
velocity U∞êx, where êx is a unit vector in the x-direction) down a
step formed by the line segments {x ≤ 0, y = h}, {x = 0, 0 ≤ y ≤ h}
and {x > 0, y = 0}, under the assumption that the oncoming flow
separated from the top of the step (0, h) and produced a downstream
cavity. His asymptotic model, valid for slender eddies, was derived by
coupling the lubrication-theory limit of the vorticity equation

∇2ψ = −ω0

(where ψ denotes the stream function and ω0 the constant vorticity in
the cavity) to a potential outer flow via continuity of pressure according
to thin aerofoil theory (see, for example [78, 94]) across an unknown
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dividing streamline y = S(x). Thus far, we have presented each
problem in a sanitized nondimensional version. In this case, however, it
is instructive to first specify the basic model and boundary conditions
as this will illustrate the sorts of problem specification difficulty that
frequently arise with such equations. In dimensional form, the modeling
produces the equation

(6)
ρU2

∞
π

∫
−

L

0

S′(t)
t− x

dt = b+
1
2
ρU2

∞ − ρω2
0S

2(x)
8

.

Here b denotes the jump in the Bernoulli constant across the cavity
boundary y = S(x), and it has been assumed that the separation
streamline reattaches at (L, 0) where h/L � 1. It is easily shown
that the pressure can only remain finite if the flow separates smoothly
(i.e. tangentially) from the top of the step and reattaches smoothly
at x = L: on physical grounds, the correct boundary conditions are
therefore

(7) S(0) = h, S(L) = 0, S′(0) = 0, S′(L) = 0.

It is not initially clear, however, whether these conditions lead to an
under- or an over-specified problem. The equation is first order, and so,
as we have seen, is likely to require two boundary conditions. Moreover,
the parameters L, ω0 and b are all unknown and must be found as part
of the problem. Although it therefore now seems as though there might
be too few boundary conditions, an extra relationship between the
unknown parameters is concealed in (6). The easiest way to investigate
this is to multiply both sides of (6) by S′(x) and integrate from 0 to
L. The integral on the left-hand side of (6) is evidently zero, and the
right-hand side may now be integrated. Using the boundary conditions
(7) now gives

b+
1
2
ρU2

∞ =
ρω2

0h
2

24
.

This trick (which here amounts to a global force balance) yields useful
results for many SIDEs with a Cauchy kernel. (It is essential though
that the necessary double integral exists, and for this reason no progress
of this sort can be made on P1 or P2.)

After nondimensionalizing x with L and S with h, the problem
becomes

(8)
1
π

∫
−

1

0

S′(t)
t− x

dt = μ(1 − 3S2(x)), 0 < x < 1
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where μ = ω2
0Lh/(24U2

∞). The boundary conditions are now

S(0) = 1, S(1) = 0, S′(0) = 0, S′(1) = 0

and it may be shown that if one of the derivative boundary conditions is
satisfied, then the other will automatically hold. Essentially therefore
there are three boundary conditions and one unknown parameter μ.
The equation involves a single derivative, so the problem specification
appears to be in order. P4 furnishes us with our first nonlinear
equation; no exact solutions to the problem are known, though some
(not very informative) asymptotic limits of (8) may be analyzed.
Numerical solutions were successfully computed in [13] using an ad
hoc iterative numerical method.

P5 Slot-film cooling equation. In most modern jet engines the gas
Turbine Entry Temperature (TET) exceeds the melting temperature of
the alloy from which the turbine blades are manufactured. To protect
the blades a film of cool air is injected into the flow through slots or
holes in the blade surface. An optimization problem naturally arises,
for if the injection is too weak the cooling effect will be insufficient,
while if the injection is too strong the cool air will penetrate too far
into the cross flow and have no effect. Slot film cooling was modeled
in [28] by coupling a potential flow model for the flow in the injected
film with a thin aerofoil theory representation of the cross flow. For
weak injection rates, it can be shown that the free streamline y = S(x)
that separates the injected coolant flow from the cross flow satisfies the
(nondimensional) NLSIDE

(9)
1
π

∫
−

∞

0

S′(t)
t− x

dt =

⎧⎪⎪⎨⎪⎪⎩
1
2

0 < x < 1

1
2
− M2

2S2(x)
1 < x <∞

with boundary conditions S(0) = S′(0) = 0, S(∞) = M .

This example is somewhat more intricate than P3, for not only is the
range semi-infinite, so that allowance must be made for the behavior
of S at infinity, but it may also be shown that

S ∼ S(1) +O((1 − x) log(1 − x))
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when x ∼ 1. S thus remains finite, but has infinite slope at an internal
point of the domain. We further note that (9) is first order and, arguing
as for P1, we therefore expect to specify two boundary conditions.
Here though there are three, for in addition to determining S(x), the
nondimensional mass flow M of the injected fluid must be found. In
actual fact, more information may be obtained about M by using the
simple trick that was applied in P4, namely, multiplying both sides of
(9) by S′(x) and integrating with respect to x from 0 to ∞. This gives

0 =
1
2

∫ 1

0

S′(x) dx+
1
2

∫ ∞

1

(
S′(x) − M2S′(x)

S2(x)

)
dx

and thus M = S(∞) = 2S(1) and, if required, M may be removed
completely from the problem.

As far as the asymptotic behavior of the solution is concerned, we
note that (9) may be inverted to yield

S′(x) =
√
x

2π

∫
−

∞

1

M2

S2(t)
√
t(t− x)

dt,

or, if we write S = M2/3T ,

T ′(x) =
√
x

2π

∫
−

∞

1

1
T 2(t)

√
t(t− x)

dt.

If T is monotonic and bounded above, then it is relatively simple to
obtain the asymptotic estimates for the solution in the form
(10)

T (x) ∼ x3/2 as x→ 0, and T (x) ∼ T (∞) − T 4(∞)
πx

as x→ ∞.

This problem was solved in [28] using direct iteration; the relatively
slow approach of the solution to T (∞) implied by (10) has important
numerical implications as it demands that accurate numerical estimates
must be made for large x.

P6 Fluid suction equation. Polluted fluid lying below a clean stream
flows steadily along the x-axis: a porous suction slot occupying the
region 0 ≤ x ≤ L is to be used to remove the unwanted contaminant.
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For x > L the flow is constrained by a wall of a given height. The
suction is arranged so that a desired amount of pollutant can be
removed. Using similar reasoning to that employed to derive the
equations for P4 and P5, it may be shown that the nondimensional
height S(x) of the final polluted streamline satisfies the equation

(11)
1
π

∫
−

1

0

S′(t)
t− x

dt =
θ

S(x)
− 1, 0 < θ ≤ 1,

with boundary conditions S(0) = S0, S(1) = S1. The total amount
of fluid that is removed from the oncoming stream is determined by
the suction strength θ > 0 and the height S1 of the downstream wall.
As we shall demonstrate in Section 4, (11) is a particularly interesting
problem since under certain conditions the solution may not exist.

P7 Bissett/Spence lubrication equation. The line contact problem
of elastohydrodynamic lubrication theory was studied in [6] in an
asymptotic limit corresponding to slow bearing rotation speeds. The
general structure of the flow under the bearing is complicated, for
it transpires that a transition layer where rapid changes take place
separates distinct inlet and contact zones, before the flow leaves the
bearing in a downstream exit layer. In both the transition and exit
zones lubrication theory may be coupled to standard contact problem
theory for plane elasticity (see, for example [77]). The result is that the
flow in each region is determined by an NLSIDE. Here, we specifically
consider the transition region, within which the nondimensional film
thickness S(x) satisfies

(12)
σ

π

∫
−

∞

−∞

S(t)
(1 + S(t))3

dt

t− x
= S′′(x).

In (12) σ is a nondimensional parameter related to the scaled exit film
thickness, which may be regarded for the purposes of this discussion as
known (though in fact it must be determined from another, separate
problem). The equation is second order and the highest derivative
does not appear in the singular integral operator; we therefore expect
to have to prescribe two boundary conditions. As is often the case
when the range is infinite, the boundary conditions amount to matching
conditions and assert that

S ∼ x−1/2 x→ +∞, S ∼ 4
3
σ(−x)3/2 x→ −∞.
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This problem presents some formidable challenges. It is nonlinear and
second order, the boundary conditions are somewhat awkward and the
infinite range means that proper account must be taken of contributions
from both −∞ and ∞.

As with nearly all of the equations reviewed in this collection, there
are alternative ways to present the problem that may be more or less
convenient from a numerical point of view. In [6] (12) was inverted to
yield

1
π

∫
−

∞

−∞

S′′(t)
t− x

dt = − σS(x)
(1 + S(x))3

subject to the boundary conditions S(0) = 1/2, S′′(−∞) ∼ σ(−x)−1/2

(and implicitly S′(0) = 0). A numerical solution was then sought by
transforming the problem onto the finite region [0, π] and expanding
the solution in a series of suitably chosen trigonometrical functions for
which the required integrals are known explicitly (see also [87, 88]).
The resulting nonlinear equations for the coefficients in the Fourier
expansion were then solved using the Powell hybrid method (see, for
example [83]). Needless to say, the choice of coordinate transformation,
the form of the expansion and the numerical methodology for truncat-
ing the Fourier series all have a profound effect on the accuracy of the
final numerical solution.

P8 LMFBR boiler tube equation. In a Liquid Metal Fast Breeder
Reactor (LMFBR) water is heated in pipes by surrounding the pipe
with a countercurrent liquid metal heat source. The water enters the
pipe at ambient temperature and travels up the pipe. As it is heated,
bubbles develop and coalesce into “slug flow” as the water boils. After
transition through a complicated churn-turbulent region of two-phase
gas/liquid flow, an “annular” two-phase flow is established. This is
characterized by a fast-moving column of water vapor in the center of
the pipe which is surrounded by a thin layer of superheated water on
the pipe wall. This annular flow region takes up most of the length of
each heat exchanger pipe. Eventually, the heat transfer from the liquid
metal through the pipe wall triumphs and the last vestiges of liquid
are turned to steam, which then drives turbines to produce electricity.
From a practical point of view, it is important to be able to predict
the position of the “dryout” point where the liquid layer vanishes as
thermal stresses at this point may degrade the integrity of the pipe
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wall. This problem was considered in [76], where a thin layer analysis
in the fluid region was coupled to a high-speed potential flow model in
the gas core. The thermal problem was solved in the fluid region, where
the temperature gradient drives a Stefan problem that determines how
quickly the superheated fluid loses heat to allow it to boil away as
steam and take its place in the gas core flow. When the flow is steady
([76] also treated unsteady cases) it was shown that the nondimensional
location y = S(x) of the boundary separating the fluid region from the
gas satisfies the singular integro-differential equation

(13)
θ

π

(∫
−

1

0

S′(t)
t− x

dt

)
x

=
Q

S3(x)
+

τ

2S(x)
,

where Q, τ and θ are all nondimensional (and, in the most general case
all O(1)) parameters; Q characterizes the wall heating and determines
how much evaporation takes place, τ measures the importance of the
shear stress exerted by the gas core on the fluid region and θ measures
the scaled order of magnitude of the pressure in the gas flow relative
to that in the fluid flow. The boundary conditions are

S′(0) = 0, S(1) = 0, S(0) = A

where A is a known constant related to the pressure in the pipe at the
onset of annular flow. Although (13) is somewhat similar to the water
drop equation described in P9, we shall see in Section 6 that it possess
some properties that may lead to serious numerical complications. It
also contains an extra challenge, namely that the singular integral is
itself differentiated.

P9 Air blown water drop equation. The ability of an upward flow of
air to support a thin liquid layer against gravity on a plane (as, for
example on a car windscreen in a rain shower) was examined in [62].
In this study, the standard lubrication theory equations were solved
to determine the flow inside a long, thin drop with free surface h(x)
and length L. The assumption that h′(x) = O(ε) provides the small
parameter ε � 1 in the problem. By coupling the pressure inside
the drop to thin-aerofoil theory and including the effects of gravity
and surface tension, h(x) may be shown to satisfy the nondimensional
NLSIDE

(14) λ

(∫
−

1

0

S′(t)
t− x

dt

)
x

− βS′′′(x) + S′(x) + γ =
1

S(x)
.
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Here x has been scaled with L and h(x) = h0S(x) where h0 =√
3τL/2ρwg. The other nondimensional parameters in the problem are

λ = ρU2
∞/(πLρwg), β = σ/(ρwgL

2) and γ = Lα/h0. The parameter τ
is the shear stress produced by the flow over the drop, σ denotes the
surface tension (N/m), ρw and ρ the densities of the water in the drop
and the free stream (of speed U∞) respectively, g is the acceleration
due to gravity and α is the angle (presumed small) of the plane to
the horizontal. As far as boundary conditions are concerned, it was
assumed in [62] that β � 1 so that the third derivative term was
absent from (14). As usual, it is now necessary to consider carefully
which of the parameters are known and which are unknown, so that
suitable boundary conditions may be specified. Probably the easiest
way of understanding the details of the problem specification is to note
that, so long as the physical properties of the air and the water and the
shear stress τ are known, then once λ has been determined, L is then
given by the relationship

L =
ρU2

∞
πλρwg

and the problem is essentially solved. We expect that (14) (with β = 0)
will require three boundary conditions, and it transpires that these are

(15) S(0) = 0, S(1) = 0, S′(1) = −λ−1/2.

The drop therefore attaches linearly at its downstream end x = 1 but
has infinite slope at its upstream end x = 0, where S(x) ∼ √

2x.
Though thin aerofoil theory predicts that the behavior at x = 0 will
lead to an infinite pressure, it is easy to see that the inclusion of the
hitherto neglected surface tension term in (14) gives rise to a boundary
layer of width O(β1/2) that allows attachment with finite slope at the
nose of the drop.

The problem is a challenging one numerically, since not only is the
problem nonlinear, but for arbitrary values of the physical parameters
of the problem, λ plays the role of an eigenvalue in that it must take
a particular value if a solution is to exist to (14) subject to (15).
Any successful numerical scheme must therefore not only be capable of
determining λ, but also be able to cope with the infinite slope at the
nose of the drop. In [62] the problem was first regularized by setting
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y =
√
x and S(x) =

√
2xH(y) and then further simplified by defining

G(y) = H(y) + yH ′(y). The resulting NSLIDE was then solved by
using discretization and collocation to produce a system of nonlinear
algebraic equations which were solved using the Powell hybrid method
(see [83]). The numerical results showed that two values of λ were
possible for α < 0.46λ−1/2ε. It was not clear which, if either, of these
values was stable. This result also suggested that wind-supported drops
are not possible for sufficiently large α.

This problem is particularly illuminating as issues regarding problem
specification, boundary conditions, asymptotic behavior of the solution,
boundary layers, regularization, nonuniqueness and nonexistence that
are so commonly encountered in the analysis of NLSIDEs are all
present.

P10 Cavitating Prandtl-Batchelor aerofoil. A model of an aerofoil
with a recirculating Prandtl-Batchelor region behind a spoiler was
posed in [99] as a paradigm for the flow above a stalled aerofoil.
In this problem, because the obstruction to the flow not only has
finite thickness but also produces nonzero lift, there are two unknown
functions, namely the height of the cavity y = S(x) above the aerofoil
surface, and the cavity vorticity v(x). Coupling the cavity flow with a
thin aerofoil theory model of the oncoming stream by insisting in the
normal way that the pressure is continuous across the cavity boundary
yields the two NLSIDEs

1
2π

∫
−

β

0

S′(t)
t− x

dt = 2πv(x) + λ− (ΓS(x))2

8
,(16) ∫

−
1

0

v(t)
t− x

dt =
1
2

(
h′(x) +

S′(x)
2

)
.(17)

Here the (known) function h(x) is determined by the aerofoil geometry,
β is the (unknown) x-ordinate at which the cavity reattaches to the
aerofoil, λ is the perturbation Bernoulli constant in the cavity and
Γ is the nondimensional constant cavity vorticity. Once again, it
is not immediately clear what is known and what is unknown. It
transpires, however, that if the reattachment point β is specified, then
the quantities λ and Γ are uniquely determined. We therefore require
one boundary condition for v and four for S. This makes excellent
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physical sense, as the Kutta condition at the trailing edge of the aerofoil
requires that v(1) = 0, the separation points give S(0) = h0 and
S(β) = 0, and the requirement that the pressure is finite at separation
and reattachment gives S′(0) = h1 and S′(β) = 0 (where the known
constants h0 and h1 are related to the aerofoil geometry).

The equations (16) and (17) pose a challenging problem; they are
a nonlinear system and include unknown parameters that cannot be
eliminated. A numerical solution was calculated in [99] using an ad hoc
iterative method. It seems however that nothing at all has appeared in
the literature concerning the theory of numerical schemes for systems
of NLSIDEs such as (16) and (17).

4. The crucial importance of well-posedeness.

4.1 Regularization. This section is devoted to further analysis of P6
and equation (11), the purpose of the analysis being to illustrate how
the well-posedness or otherwise of NLSDIEs may depend delicately on
the boundary conditions. To aid this analysis, let us first regularize
(11) by inverting the finite range Hilbert transform. This may be done
by using standard techniques (see for instance Muskhelishvili [77]). We
obtain

(18) S′(x) = − 1
π

∫
−

1

0

√
t(1 − t)
x(1 − x)

(
θ

S(t)
− 1

)
dt

t− x
+

C√
x(1 − x)

where C is an arbitrary constant that must be chosen to satisfy the
boundary conditions. Integrating (18) with respect to x from 0 to x
gives

S(x) − S(0) = − 1
π

∫
−

1

0

√
t(1 − t)

(
θ

S(t)
− 1

)
×

[∫ x

0

1√
s(1 − s) (t− s)

ds

]
dt+ C

∫ x

0

1√
s(1 − s)

ds

so that

S(x) − S(0) = − 1
π

∫ 1

0

(
θ

S(t)
− 1

)
log

∣∣∣∣∣
√
x(1 − t) +

√
t(1 − x)√

x(1 − t) − √
t(1 − x)

∣∣∣∣∣ dt
+
Cπ

2
+ C sin−1(2x− 1).
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Since S(0) = S0 and S(1) = S1, we find that S1 − S0 = Cπ, and hence
(11) may be rewritten in the Fredholm integral equation form

(19) S(x) +
θ

π

∫ 1

0

k(x, t)
S(t)

dt = g(x)

where

k(x, t) = log

∣∣∣∣∣
√
x(1 − t) +

√
t(1 − x)√

x(1 − t) − √
t(1 − x)

∣∣∣∣∣ ,
g(x) =

√
x(1 − x) − 2

π
(S1 − S0) sin−1

√
1 − x+ S1

and use has been made of the identity sin−1(2x − 1) = (π/2) −
2 sin−1

√
1 − x.

4.2 Non-existence of a solution. If S0 > 0 and S1 = 0, then problem
(11) has no Hölder continuous solution, as we shall prove below. We
start by noting that

Lemma 4.1. Let S(x) be a solution of (11) with S a Hölder
continuous function on [0, 1], and assume that S0 > 0. Then

1. S(x) > 0 for all x ∈ (0, 1);

2. S(x) ≤ g(x) for all x ∈ [0, 1].

Proof. 1. Note first that, as S is a solution of (11), the left-hand side
of (11) is finite for x ∈ (0, 1). This implies that S(x) cannot vanish for
x ∈ (0, 1). Since S(0) > 0, it must therefore be true that S(x) > 0 for
x ∈ (0, 1).

2. Since S is Hölder continuous, the regularization process resulting
in (19) can be carried out (see [77, p. 249]). Hence, if S is a solution
of (11) it is also a solution of (19). The function k(x, t) is evidently
always strictly positive for x ∈ (0, 1) and t ∈ (0, 1), and since S(x) > 0
for all x ∈ (0, 1), we see from (19) that we must have S(x) ≤ g(x) for
x ∈ (0, 1). Since S(0) = S0 = g(0) and S(1) = S1 = g(1), the second
part of Lemma 4.1 is proved.

We are now in the position to prove our main result.
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Theorem 4.1. When 0 < θ ≤ 1 and S1 = 0, problem (11) and its
regularization (19) have no Hölder continuous solution.

Proof. Assume that x ∈ [0, 1] and set S1 = 0. For S0 > 0 and θ = 0,
we see from (19), S(x) = g(x). Since sin−1

√
1 − x ≤ (π/2)

√
1 − x for

all x ∈ [0, 1],
g(x) ≤ A

√
1 − x, A = 1 + S0.

Then since k(x, t) ≥ 0 for all (x, t) ∈ [0, 1] × [0, 1], for a solution
satisfying (19) we must have

(20)
∫ 1

0

k(x, t)
dt

S(t)
≥

∫ 1

0

k(x, t)
dt

g(t)
≥ I(x)

A

where

I(x) =
∫ 1

0

k(x, t)√
1 − t

dt.

Integrating I(x) by parts yields

(21)

I(x) = 2
√
x(1 − x)

∫
−

1

0

dt√
t (x− t)

= 2
√

1 − x log
∣∣∣∣1 +

√
x

1 −√
x

∣∣∣∣
≥ 2

√
1 − x log

∣∣∣∣ 1
1 − x

∣∣∣∣ .
From (19), (20) and (21) we now have

g(x) − S(x) ≥ 2θ
πA2

log
∣∣∣∣ 1
1 − x

∣∣∣∣ g(x).
For every θ > 0 and S0 > 0, there exists an xθ such that

2θ
πA2

log
∣∣∣∣ 1
1 − x

∣∣∣∣ > 1, for xθ < x < 1.

In this range g − S ≥ g, i.e., S ≤ 0 which contradicts Lemma 4.1 and
proves the theorem.
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Consider further the case when S1 �= 0. Now we have

g(x) =
√
x(1 − x) − 2

π
(S1 − S0) sin−1

√
1 − x+ S1

and significantly g(x) does not now tend to zero as x → 1. Since the
nonexistence proof of Theorem 4.1 above seems to depend crucially on
bounding the function g(x) by A

√
1 − x, it seems most unlikely that

the proof could be adapted to include cases where S1 �= 0. Indeed,
the work in subsection 5.2 below strongly suggests that for S1 > 0 a
solution exists and may be computed with little trouble.

5. Numerical solution.

5.1 Asymptotic analysis. We now seek an asymptotic form of the
solution of (11) to assist with the design of our numerical schemes.
From (19), we know that when θ = 0 the function g(x) is a solution,
and therefore

S(x) =
√
x(1 − x) − 2

π
(S1 − S0) sin−1

√
1 − x+ S1, θ = 0.

In the special case θ = 0, therefore, we have

S ∼ S0 +
√
x

(
1 +

2(S1 − S0)
π

)
+O(x3/2), x→ 0

S ∼ S1 +
√

1 − x

(
1 − 2(S1 − S0)

π

)
+O((1 − x)3/2), x→ 1,

so that it is clear that S′(x) is unbounded at both ends of the range.

Is this asymptotic behavior retained when θ > 0? To answer this, we
consider an arbitrary θ > 0 and seek an asymptotic solution as x → 0
of the form

S(x) = S0 +K1(θ)xm, x→ 0.

Choosing R so that 0 ≤ x � R � 1 and using the definition of the
Cauchy principal value, we see that the integral term in (11) is given
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by

mK1(θ) lim
ξ→0

{∫ x−ξ

0

sm−1

s− x
ds+

∫ R

x+ξ

sm−1

s− x
ds

}
+

∫ 1

R

S′(s)
s− x

ds

= mK1(θ) lim
ξ→0

{
−

∫ x−ξ

0

sm−1

x
(1 + s/x+ s2/x2 + · · · ) ds

+
∫ R

x+ξ

sm−1

s
(1 + x/s+ x2/s2 + · · · ) ds

}
+

∫ 1

R

S′(s)
s− x

ds,

and on integration it is now straightforward to see that as ξ → 0 the
only instance when terms O(x−p), p > 0, cancel (so that the integral is
finite) is whenm = 1/2. It is now easy to show that, in order to balance
the terms at next order as x→ 0, we must include a logarithmic term,
and thus

S(x) ∼ S0 +K1(θ)x1/2 +K2(θ)x3/2 log x+O(x3/2), x→ 0

where K1(θ) and K2(θ) may be expressed in terms of quadratures
involving S(x). Assuming the validity of the differentiation, this shows
that S′(x) behaves like x−1/2 as x → 0, a fact that will be used to
design our numerical schemes. (Near to x = 1, it is possible to show
by a change of variables that the same behavior applies.)

5.2 Numerical procedures. In this section we describe two numeri-
cal procedures to solve problem (11). One is based on the numerical
approximation of equation (11) itself and the other is based on approx-
imating the regularized equation (19).

5.2.1 Global collocation. We begin by solving (11) directly. In view
of the asymptotic results of subsection 5.1, a solution is sought in the
form

(22) F ′(w) = (1 − w2)−1/2
∞∑

j=0

ajTj(w)

where

F (w) = S

(
w + 1

2

)
, w = 2x− 1 ∈ [−1, 1], for x ∈ [0, 1],
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and Tj(w) are the Tchebyshev polynomials of the first kind defined by
Tj(w) = cos(j cos−1 w). With the same change of variables the SIDE
(11) becomes

(23)
θ

F (w)
− 1 =

2
π

∫
−

1

−1

F ′(u)
u− w

du.

Integrating (22) and imposing the boundary conditions F (−1) = S0

and F (1) = S1 so that a0 = (S1 − S0)/π, we obtain

(24) F (w) = S1 +
S0 − S1

π
cos−1 w −

∞∑
j=1

aj

j
sin(j cos−1 w).

Substituting (22) and (24) into (23) now yields

(25) θ

⎧⎨⎩S1 +
(
S0 − S1

π

)
cos−1 w −

∞∑
j=1

aj

j
sin(j cos−1 w)

⎫⎬⎭
−1

− 1

=
2
π

∫
−

1

−1

1
(1 − u2)1/2(u− w)

∞∑
j=0

ajTj(u) du.

The Tchebyshev polynomials of the first kind Tj and their companions
of the second kind Uj satisfy the relation

(26)
∫
−

1

−1

Tj(u)
(1 − u2)1/2(u− w)

du =
{

0 j = 0
πUj−1(w) j ≥ 1,

so from (25) and (26) we obtain the final equation for the coefficients
aj ,

(27) θ

⎧⎨⎩S1 +
(
S0 − S1

π

)
cos−1 w −

∞∑
j=1

aj

j
sin(j cos−1 w)

⎫⎬⎭
−1

− 1

= 2
∞∑

j=1

ajUj−1(w).

To compute an approximation to the function F (w), it is necessary
to truncate the series (24) after N terms. The N unknowns aj ,
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j = 1, 2, . . . , N , are then determined by collocation at N points, i.e.,
equation (27) is forced to be exactly satisfied at N points chosen from
[−1, 1]. The N points chosen were the zeros of the Nth Tchebyshev
polynomial of the first kind since these points, at least for the linear
equation, are known to give a faster rate of convergence (see, for
example, [14, 21]). The resulting nonlinear system was then solved
using the MATLAB routine fminsearch.

5.2.2 Piecewise collocation. We turn now to the problem of solving the
regularized equation (19) by dividing the interval [0, 1] into N equally-
spaced intervals bounded by 0 = x0, x1, x2, . . . , xN = 1, and writing
the integral equation at the internal points of the intervals as

S(xi) = g(xi) − I(xi), i = 1, 2, . . . , N − 1

where

I(x) =
θ

π

∫ 1

0

k(x, t)
S(t)

dt.

The general plan is now to successively calculate

(28)
S̃(k)(xi) = g(xi) − I(xi)

S(k+1)(xi) = S(k)(xi) + φ(S̃(k)(xi) − S(k)(xi))

for 1 ≤ i ≤ N − 1 where φ is an under-relaxation parameter, chosen
before the iterative process starts, and k = 0, 1, 2, . . . , an initial guessed
profile for S.

To approximate I(xi), we assume that S is piecewise constant on each
of the intervals [xj , xj+1) and write

(29) I(xi) =
θ

π

∫ 1

0

k(xi, t)
S(t)

dt =
θ

π

N−1∑
j=0

1
2

(1/Sj + 1/Sj+1)h(xi, xj)
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where Sj = S(xj) and

h(xi, xj) =
∫ xj+1

xj

k(xi, t) dt

= (xj+1 − xi) log

∣∣∣∣∣
√
xi(1 − xj+1) +

√
xj+1(1 − xi)√

xi(1 − xj+1) −
√
xj+1(1 − xi)

∣∣∣∣∣
− (xj − xi) log

∣∣∣∣∣
√
xi(1 − xj) +

√
xj(1 − xi)√

xi(1 − xj) −
√
xj(1 − xi)

∣∣∣∣∣
+

√
xi(1 − xi)

[
sin−1(2xj+1 − 1) − sin−1(2xj − 1)

]
.

5.2.3 Numerical results. Computations obtained from the piecewise
method (28) are shown for 10, 20 and 100 points superimposed in
Figure 1. The parameters used were θ = 1/2, S(0) = 1 and S(1) = 1/2.
No numerical relaxation was necessary (φ = 1) and solutions were
deemed to have converged when

N−1∑
i=1

(
S̃

(k)
i − S

(k)
i

)2

< TOL

where the tolerance TOL was chosen to be 10−8. Convergence occurred
very quickly, taking only 9 iterations for 10 and 20 points and 10
iterations for 100 points. By examining predicted values for S(1/2),
it was clear that the scheme was converging as the number of mesh
points increased. The numerical results of Figure 1 also confirm the
asymptotic analysis, the square-root behavior at each end of the range
being evident.

When the global collocation method (27) was used to solve (11) with
S(0) = 1, S(1) = 1/2 and θ = 1/2, the results were indistinguish-
able from the converged solution calculated using the piecewise col-
location method. This may be regarded as an “easy” case for both
of the schemes. When values of S(1) that are close to zero are used,
however, things become altogether more awkward. The piecewise collo-
cation method requires a greater number of iterations and more under-
relaxation to converge (with S(0) = 1 and S(1) = 0.05, for example,



190 J.A. CUMINATO, A.D. FITT AND S. MCKEE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
(x

)

FIGURE 1. Piecewise collocation solution of (19) for N = 10, 20 and 100 with
S(0) = 1, S(1) = 1/2 and θ = 1/2.

even computations with only 10 mesh points required φ = 0.001 and
took 21562 iterations to converge). For values of S(1) less than about
0.01, this method fails entirely. In contrast to this, the global colloca-
tion method (27) continues to produce plausible-looking solutions even
when S(1) = 0, though we know that for this case no solution exists.
As S(1) → 0 both the error and the number of iterations required in-
crease, but without careful monitoring of these parameters one could
easily be mislead into suspecting that there is nothing amiss with the
problem. This provides further confirmation of our earlier statement
that, for the type of equations considered in this study, understand-
ing the existence and uniqueness, asymptotic structure and physical
aspects of the solutions are all crucial.

6. An example strategy for obtaining solutions.

6.1 Preamble. The previous two sections have highlighted the diffi-
culties in attempting to solve the apparently innocuous NLSIDE (11).
Here we were fortunate that we were able to establish some results con-
cerning the nonexistence of the solution under certain circumstances. In
general this will not be the case. Nevertheless, it is possible to suggest
a tentative strategy for determining credible solutions and techniques
for checking that credibility. We shall illustrate our approach using the
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equation

(30)
θ

π

(∫
−

1

0

S′(t)
t− x

dt

)
x

=
(x− 1)ṁ
S3(x)

+
τ

2S(x)
,

a version of the boiler tube equation from problem P8 where it has
been assumed that the liquid metal produces a specific form of heating,
namely Q = (x− 1)ṁ where ṁ is a constant.

6.2 A linear equation. Before considering the full nonlinear equation,
let us examine the simpler linear equation

(31)
1
π

(∫
−

1

0

S′(t)
t− x

dt

)
x

= 1,

subject to the boundary conditions

(32) S′(0) = 0, S(1) = 0, S(0) = 1

corresponding to taking A = 1 in P8. During our discussion of P1 a
linear equation very similar to (31) was solved in closed form; we now
wish to consider possible numerical approaches to the solution of the
paradigm problem (31), (32).

Suppose that we first proceed using an ad hoc method and discretize
the interval [0, 1] by dividing it into n equally spaced subintervals
[ξj , ξj+1] where ξj = j/n, 0 ≤ j ≤ n − 1, are the mesh points and
n denotes the number of mesh points. We now decompose the integral
in (31) into the sum of n integrals, apply the trapezoidal rule to
each of those integrals, perform a central difference for the derivative
and collocate, giving a system of linear equations. The solution of
these equations would be a routine matter, and this method has the
benefit of simplicity and speed. Unfortunately (as shown in [76]), these
advantages are outweighed by the fact that this method can easily be
shown to produce solutions that do not converge as the grid is refined.
This may be easily confirmed, for (31) admits the analytic solution (see,
for example [77, 80, 81])

(33) S(x) =
(

2
π
− x

2

)√
x(1 − x) − 1

π
sin−1(2x− 1) +

1
2
.
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This experience suggests that we should examine the problem more
closely before designing a numerical scheme. We first note that (33)
implies that, near x = 1, S(x) → 0 like

√
1 − x. The slope of S(x) thus

becomes unbounded as x → 1, and it is this that disrupts the simple
numerical scheme discussed above.

Obviously the problem requires some sort of regularization, so in this
case we set

(34) S(x) = T (y), where y2 = 1 − x.

Equation (31) now becomes

(35)
1
π

(∫
−

1

0

T ′(u)
y2 − u2

du

)
y

= 2y,

subject to the boundary conditions

(36) T (0) = 0, T ′(1) = 0, T (1) = 1.

As is shown in [76], the conventional numerical discretization discussed
above now displays convergence as the grid is refined. Of course, a price
has been paid for this convergence, for not only was the regularization
necessary, but the amount of algebra required to obtain the relevant
set of linear equations is now greatly increased.

6.3 Asymptotics and regularization. We now return to the full
problem (30). At the upstream end x = 1 (the dryout point, see P8) the
fluid layer thickness S(x) must vanish. Therefore, the nonlinear term
ṁ/S3(x) which dominates the righthand side of (30) must be balanced
by at least one other large term in the equation. We shall assume that
the shear stress is negligible and that the required contribution comes
from the Cauchy integral in a small region near x = 1. Thus we assume
that S(x) ∼ A(1−x)p for some positive constants A and p (p < 1). An
asymptotic balance ultimately gives

(37) S(x) ∼
(

4πṁ
θ

)1/4

(1 − x)1/2, as x→ 1

(correct to powers of 1 − x). Encouraged by the linear problem of
subsection 6.2, we write

S(x) = γT (y), y2 = 1 − x, (ξ2 = 1 − t)
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FIGURE 2. Graph of v(x) for n = 5 (triangles), 10 (diamonds), 25 (squares),
40 (broken line) and ṁ = 1, θ = 1 and τ = 2.

where γ = (4πṁ/θ)1/4 to produce the regularized version

(38)(∫
−

1

0

T ′(ξ)
y2 − ξ2

dξ

)
y

=
(
πy2

ṁθ

)1/2
[
− y2

2T 3(y)

(
ṁθ

π

)1/2

+
τ

2T (y)

]
,

subject to the boundary conditions

T (0) = 0, T ′(1) = 0, T (1) =
(

θ

4πṁ

)1/4

.

6.4 Numerical method and results. Following [76] a mesh ξj = j/n
is defined on the interval [0, 1] with T ′(ξ) assumed constant in each
subinterval [ξj , ξj+1], that is, the function T (ξ) is approximated by
linear functions in each subinterval. The pressure gradient

py =
(∫
−

1

0

T ′(ξ)
y2 − ξ2

dξ

)
y

is evaluated by finite differences. Collocating (38) at the mesh points
results in the (n−2)×(n−2) set of nonlinear algebraic equations given
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by

n−1∑
j=0

(Tj+1 − Tj)
[

1
2i+ 1

log
∣∣∣∣ (2i+ 2j + 3)(2i− 2j + 1)
(2i− 2j − 1)(2i+ 2j + 1)

∣∣∣∣
− 1

2i− 1
log

∣∣∣∣ (2i+ 2j + 1)(2i− 2j − 1)
(2i− 2j − 3)(2i+ 2j − 1)

∣∣∣∣ ]
=

i

n4

(
π

ṁθ

)1/2
[
− i2

2n2T 3
i

(
ṁθ

π

)1/2

+
τ

2Ti

]
, 1 ≤ i ≤ n− 2

and T0 = 0, Tn = Tn−1 = (θ/4πṁ)1/4. The values of vj =
(4ṁπ/θ)1/4 Tj were then plotted against xj = 1 − y2

j , 0 ≤ j ≤ n as
displayed in Figure 2.

Of course, one cannot be certain that one has the correct solution, or
even if a solution exists at all. There are however a number of checks:
the residuals may be computed especially with decreasing mesh spacing;
the solution may be computed on different grids and the approximate
convergence rate computed. Figure 2 seems to confirm that a solution
exists and that the numerical method converges to this solution as the
mesh is refined.

7. Discussion and conclusion. The paper has attempted to
provide a reasonably comprehensive review of both linear and non-
linear Cauchy integral and integro-differential equations as they have
appeared in the literature. Most have been little studied and some have
defied even a numerical solution. Almost no convergence arguments
have ever, to the authors’ knowledge, been provided for any numerical
method that solves nonlinear Cauchy integral equations (but see [59]).
Thus, there is scope for both analysts and numerical analysts. The
challenges include the well-posedeness of the problem, the derivation
of asymptotic results, the design of a (universal) numerical algorithm
and its associated convergence proof and, ultimately, the translation
of the algorithm into public-domain or commercial software. The 20
equations detailed above and in the Appendix have been written down
with their boundary conditions and associated parameters and their
ranges. We see them, or at least a subset of them, as also providing a
test set against which new algorithms may be gauged. However, a word
of caution is required, for we cannot guarantee the correctness of all
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of these equations either from a modeling or a well-posedness point of
view. Evidently the latter will not in general be possible until analysts
develop a general theory of well-posedness, or, if that proves impossi-
ble, are able to demonstrate existence and uniqueness on an individual
basis.

The object of this paper was not only to review a collection of equa-
tions. It was also to illustrate the pitfalls that may await the numer-
ical analyst who makes no attempt to analyze the integral equation.
Thus, we have displayed an innocuously simple looking Cauchy integro-
differential equation, the fluid suction equation of P6, and demon-
strated that even though we were able to obtain credible-looking nu-
merical results which appeared to satisfy the asymptotic results, the
calculated solution was, in fact, quite wrong: a nonexistence proof
makes this clear. If more collocation points are added, the discretiza-
tion can be seen to break down with the numerical solution displaying
ever larger oscillations. Even when asymptotic results are available
and the equation has been regularized, designing an appropriate nu-
merical method is not necessarily straightforward. For example, if in
problem P8 (Section 6) the collocation points had been chosen at the
mesh mid-points (rather than at the mesh points themselves) then this
would have led to an ill-posed numerical problem.

Section 6 ends on a more optimistic note. It provides a strategy
whereby we might (though we use the term speculatively) obtain a
numerical solution to a given Cauchy integral or integro-differential
equation. The first step, if the equation contains parameters, is to
choose these parameters to simplify the equation, preferably recover-
ing a linear equation. Even if the choice of parameters is not physical,
this does not normally matter. The linear equation will then often
admit an analytic solution by standard means. If this happens, then
so much the better; if it does not, the next step is to attempt to find
asymptotic results for both end points of the range. These may be used
to regularize the equation which may then admit a numerical solution
by traditional means. With the confidence and insight gained from this
associated simpler equation we may then return to the original prob-
lem. Results from the analysis of the simpler equation and any physical
insight that has been gained regarding the underlying equation should
then allow one to determine the necessary asymptotics, to regularize
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and to solve the full problem numerically. Our experience is that this
is usually a successful strategy.

Finally, we note that in many ways we have only begun to face the
real difficulties of integral and integro-differential equations that involve
Cauchy kernels. Cauchy Volterra integral equations (see [15, 18]) have
not been discussed, and the challenges posed by unsteady problems that
involve partial singular integro-differential equations (see, for example
[29]) are an order of magnitude greater than any of the problems that
we have considered above.

Appendix

In this Appendix we list some other examples of LSIDEs and NL-
SIDEs that may be used as substitutes for the problems presented in
the collection of Section 3. The nomenclature “An” is used to signify
a problem that is similar to and may be regarded as a companion to
problem Pn appearing in Section 3. We do not give derivations or
many details of each problem below, but instead refer the interested
reader to the original publications.

A1. MOSFET/heat conduction equation. Many alternatives are
available to P1. LSIDEs with a Cauchy kernel posed on a semi-infinite
range occur naturally in many flow and heat transfer problems. One
example is the “slab heating equation” equation (see [95])

(39) − 1
π

∫
−

∞

0

S(t)
t− x

dt = S′(x)

with S(0) = S0 which arises in determining the steady cooling of a
“slab” (a half space y < 0) that lies below a fluid at temperature Tf in
y > 0. For x < 0 the slab/fluid boundary is insulated, while for x > 0
Newton cooling with Ty ∝ (T − Tf ) takes place. In (39), S denotes
the quantity T (x, 0) − Tf ; the boundary conditions are S(0) = S0 and
S(∞) = 0. The same equation also arises in the theory of MOSFET
devices and in the context of jet-flap theory (see, for example [69]).
Many closely related examples of LSIDEs occur in other practical
problems. These include the “dock” equation (see [32]) and its various
generalizations; higher order alternatives to (39) are also available (see
[95]).
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One extremely valuable feature of (39) is that, using the methodology
outlined in [95], closed-form solutions may be determined for compar-
ison purposes. This extremely elegant method can handle equations of
the form

1
π

∫
−

∞

0

v(t)
t− x

dt = u(x), 0 ≤ x <∞,

where u(x) and v(x) may be expressed in terms of the unknown function
S(x) and its derivatives as

u = an
dnS

dxn
+ an−1

dn−1S

dxn−1
+ · · · + a0S

and

v(x) = bn
dnS

dxn
+ bn−1

dn−1S

dxn−1
+ · · · + b0S

and the ai and bi are constants.

As an example, we note that using this method it can easily be shown
that (39) has the closed-form solution

S(x) = −
∫ ∞

0

�(s)e−xs ds

where

�(s) = − S0

πs1/2(1 + s2)3/4
exp

(
− 1
π

∫ s

0

log t
1 + t2

dt

)
and S0 = S(0).

A2. Geothermal energy equation. Geothermal power generation,
where hot water from as many as five kilometers deep is “mined” to
provide power, is a promising ecologically-friendly energy source. The
motion of a subterranean one-dimensional fluid-filled partially open
crack was considered in [27], where the equation

(40)
∫
−

∞

0

S′(t)
t− x

dt = S(x) +
λ

3
log

(
1 + x

x

)
+

λ

3(1 + x)
log x
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with λ = (9/2)1/3 subject to S(0) = K, S(∞) = 0 and S′(0) = 0 was
derived. The problem is to determine S(x) (a measure of the crack
height) and the constant K (a physically important quantity). The
nonconstant functions on the right-hand side of (40) suggest that it
may be a little harder to solve than P2, but most of the methods that
work successfully for P2 should also succeed here. Although (40) is
first order while the equations in P2 are second order, both problems
involve the determination of an eigenvalue of some sort. In [27] the
equation was first transformed into the finite interval [−1, 1] by setting
x = (1+ξ)/(1−ξ) and then solved (using collocation) for various values
of K to determine the unique K for which S′(0) = 0.

A3 Grain boundary diffusion. An interesting (nonconstant coeffi-
cient) alternative to the higher order LSIDE of P3 is provided by the
equation

(41)
∫
−

∞

−∞

S′′′(t)
t− x

dt = xS′(x)

subject to the boundary conditions S(0) = 0, S(±∞) = 1 and S′(0) = 0
which was proposed in [4] as a model for stress-induced atomic diffusion
along a semi-infinite grain boundary. In contrast to the equation of P3,
(41) is posed over an infinite interval; though this may introduce some
numerical complications, it was shown in [4] that a Mellin transform
may be used to reduce the equation to a Riemann-Hilbert boundary
value problem. The equation may then be solved in closed form, though
the solution so derived is extremely unwieldy.

A4 Eddy breakdown equation; flow down a step. An application of
thin aerofoil theory to the nonlinear instability of separated subsonic
flow was shown by Brown et al. ([7]) to give rise to the NLSIDE

(42) − 1
π

∫
−

d

−d

S′(t)
t− x

dt =
1
8

(x2 −AS2(x)) +B

subject to the conditions S(±d) = S′(±d) = 0. Perhaps the simplest
way to pose this problem is to assume that d is known, and thatA andB
must be determined. Thus, four boundary conditions are appropriate.
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There are obviously great similarities between this problem and P4; [7]
did not consider the numerical problem in detail, however.

A modeling refinement of P4 that shares many of its features was
proposed in [79]. Experimental investigations of high Reynolds number
laminar flow down a step suggested that directly downstream of the step
a region of constant pressure occurs before the constant-vorticity eddy
modeled by P4. Once again, thin aerofoil theory was used to derive the
nondimensional NLSIDE

(43)
1
π

∫
−

α

0

S′(t)
t− x

dt =
{−A/2 0 < x < 1
−A/2 + (S2(1) − S2(x)) 1 < x < α

where S(0) = A/λ, S(α) = 0 and S′(0) = S′(α) = 0. Here the O(1)
constant λ is related to the (known) step height, but four boundary
conditions are necessary since the equation is first order and both A
(the nondimensional pressure in the constant-pressure region) and the
nondimensional reattachment point α are unknown.

A5. Angled film cooling equation. In some turbine blade film cooling
applications (see P5) it is desirable to preserve the structural integrity
of a turbine blade by the addition of a small angled fillet placed at the
upstream edge of the injection slot. An NLSIDE for the position of
the separating streamline y = S(x) when such a fillet is present was
derived in [30] in the form

(44)

H

πD
log

(
x+D

x

)
− 1
π

∫
−

∞

0

S′(t)
t− x

dt =

⎧⎪⎪⎨⎪⎪⎩
−1

2
0 < x < 1

−1
2

+
M2

2S2(x)
1 < x <∞.

The boundary conditions are S(0) = H + d, S′(0) = H/D and
S(∞) = M . H, d and D are given constants that define the shape
and orientation of the fillet, and, as in P5, M is the unknown mass
flow from the slot that must be determined. This problem is similar to
P5 and similar numerical methods may be employed; there are some
extra complications however since the presence of the logarithmic term
does not allow M to be eliminated from the equation as in P5.
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A6. Waveless ship equation. An alternative to the nonlinear equation
of P6 is provided by studying “waveless” ships. The maritime defense
industry has long pursued the holy grail of a waveless (and therefore
practically undetectable) ship. A two-dimensional version of this
famous problem was studied in [92], where equations were derived
under a variety of assumptions. The most general form of the waveless
ship equation may be written as the Nekrasov equation

(45)
1
π

∫
−

∞

−∞

S(t)
t− x

dt =
1
3

log
[
K − 3γ

∫ x

x0

sinS(t)
(

1 +
J/π

t− β

)
dt

]
with K, γ, J , β and x0 given constants. The unknown function S(x)
represents the angle between the streamlines and the x-axis. The
parameter J represents the jet flux, and when there is no splashing its
value is zero. The parameter K is an arbitrary constant of integration.
Important classes of flows have K = 0 and K = 1. The constant
γ = g/U3, where g is gravity and U is the free-stream velocity. The
parameter x0 takes the values x0 = 0 when K = 0 and x0 = ∞ when
K = 1. Finally β is a mapping parameter chosen according to the jet
flux parameter J , and the single boundary condition required is∫ ∞

0

sinS(t) dt = − 1
3γ
.

For details of experiments that suggest that S may be small, thus
allowing linearization and further simplification, the reader is referred
to [70]. Superficially (45) may seem to have few similarities to the
equation examined in P6, for there is no derivative and the region is
semi-infinite. The two equations nevertheless share a key similarity, for
both the existence and uniqueness of solutions to (45) (and therefore
the possible nonexistence or nonuniqueness of waveless ship profiles)
depend crucially on the value of the parameter γ.

A7. Film drainage in droplet coalescence. An alternative to the
nonlinear, infinite range, higher order problem P7 is furnished by the
equation

(46)
∫
−

∞

−∞

S′(t)
S2(t)(t− x)

dt = S(x)S′′′(x)
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which was discussed in [48]. Here S(x) is a scaled dimensionless
variable denoting the gap thickness when a fluid drop settles into a
bulk phase. The boundary conditions are S′′(∞) = β, S′(−∞) = 1
and Smin = α; the constants α and β must be determined by solving
another problem. No attempt was made by the authors of [48] to solve
(46) either numerically or asymptotically; they remarked that “There
seems to be no theory for equations of this type, and the best advice
available to the authors is that at present there is no real prospect of
finding a solution numerically.”

A8. Magma migration equation. An interesting alternative to P8
with a semi-infinite range is given by the equation

(47)
(

1
π

∫
−

∞

0

S′(t)
t− x

dt

)
x

= 1 − 1
S2(x)

subject to S′(0) = ∞, S(0) = 0 and S(∞) = 1, which was developed
in [88]. Here S denotes the width of a buoyancy-driven, magma filled
crack in subterranean rock. Once again, the singular integral term is
differentiated and it transpires that it is most important to determine
the asymptotic properties of the solution. This was duly done in [88],
where numerical solutions of (47) were also determined using a spectral
Chebyshev method.

A9. Elastohydrodynamic cavity flow. The extra complications of
nonlinearity, higher order, and the fact that the singular integral is
itself differentiated are all present in P9. Another equation where such
difficulties arise was given in [86] in the form

(48)
(
S3(x)

(
1
π

∫
−

1

0

S′(t)
t− x

dt

)
x

)
x

= λxS′(x) − βS(x)

with S(1) = S′(0) = 0 and
∫ 1

0
S(t) dt = q. Here β = α/2 − 1/6,

λ = α/2 + 1/6 and q and α are known constants: S(x) denotes the
similarity form of the width of an elastohydrodynamic lens-shaped
cavity lying in a plane of cleavage between two elastic half-spaces that
is filling with a viscous fluid. Asymptotic analysis was carried out on
(48) to determine the behavior of the solution near to the crack tips and
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a numerical solution was calculated using a Chebyshev spectral method
applied to a much-transformed version of (48), once again emphasizing
the theme that it may often be better to carry out a considerable
amount of work on the NLSIDE before attempting a solution.

A10. Properties of dilute magnetic alloys. Though alternatives to
P10 are not easily found, they do exist. In [68] a model of a dilute
magnetic alloy with one localized impurity spin led to the two coupled
NLSDEs

f(x) + h(x)g(x) = n(x) +
J

2

∫
−

D

−D

ρ(t)g(t)
t− x

dt,

g(x)
(

1 − h(x) + J

∫
−

D

−D

ρ(t)f(t)
t− x

dt

)
+ f(x)

(
S(S + 1)h(x) − J

∫
−

D

−D

ρ(t)g(t)
t− x

dt

)
=

1
2
S(S + 1)J

∫
−

D

−D

ρ(t)f(t)
t− x

dt− J

2

∫
−

D

−D

ρ(t)g(t)
t− x

dt.

Here the unknown functions (components of the “t”-matrix) are f(x)
and g(x), S is the impurity spin magnitude, D is the conduction band
semi-width, J is the anti-ferromagnetic coupling and ρ(x), n(x) and
h(x) are known functions connected to the Fermi-Dirac distribution
function and the density of states for the conduction band. A numerical
solution of these equations was not attempted, for, as shown in [68], the
particular structure of the associated Riemann-Hilbert problem allows
an exact solution to be determined.
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