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THE REVERSING OF INTERFACES IN SLOW DIFFUSION
PROCESSES WITH STRONG ABSORPTION*

J. M. FOSTER', C. P. PLEASE', A. D. FITT!, AND G. RICHARDSONT

Abstract. This paper considers a family of one-dimensional nonlinear diffusion equations with
absorption. In particular, the solutions that have interfaces that change their direction of propagation
are examined. Although this phenomenon of reversing interfaces has been seen numerically, and some
special exact solutions have been obtained, there was previously no analytical insight into how this
occurs in the general case. The approach taken here is to seek self-similar solutions local to the
interface and local to the reversing time. The analysis is split into two parts, one for the solution
prior to the reversing time and the other for the solution after the reversing time. In each case the
governing PDE is reduced to an ODE by introducing a self-similar coordinate system. These ODEs
do not readily admit any nontrivial exact solutions and so the asymptotic behavior of solutions is
studied. By doing this the adjustable parameters, or degrees of freedom, which may be used in
a numerical shooting scheme are determined. A numerical algorithm is then proposed to furnish
solutions to the ODEs and hence the PDE in the limit of interest. As examples of physical problems
in which a PDE of this type may be used as a model the authors study the spreading of a viscous
film under gravity and subject to evaporation, the dispersion of a population, and a nonlinear heat
conduction problem. The numerical algorithm is demonstrated using these examples. Results are
also given on the possible existence of self-similar solutions and types of reversing behavior that can
be exhibited by PDEs in the family of interest.
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1. Introduction. This study is concerned with properties of solutions to a one-
dimensional slow diffusion equation with strong absorption

oh 0 mOh 1—g
0 =z (17 5)
with m > 0, ¢ > 0, and m — g > 0. Here h is the concentration of some species, = and
t denote space and time, respectively, and the exponents m and ¢ are constants. All
variables in (1.1) are dimensionless. Boundary conditions and initial conditions to be
imposed on (1.1) are discussed below; see (1.2)—(1.4). In this context the term “slow
diffusion” refers to (1.1) with m > 0 so that the interfaces of compactly supported
solutions have a finite propogation speed [10]. The term “strong absorption” refers
to (1.1) with ¢ > 0, as introduced in [6]. The family of equations shown in (1.1)
is widely used as a model for many physical situations including the spreading of
viscous gravity currents (typically m = 3 and ¢ = 0, 1) [1], fluid flow in porous media
(typically m = 1 and ¢ = 0,1) [2], population modeling (typically m = 1 and ¢ > 0)
[9], and nonlinear heat conduction (typically m > 1 and ¢ > 0) [10]. In all cases the
first term on the right-hand side (RHS) of (1.1) represents diffusion, while the second
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term on the RHS represents absorption or consumption of h according to a power-law.
In section 1.1 the derivation of the model for the case of a slowly spreading viscous
film under gravity and subject to evaporation is outlined.

In many problems of practical interest, bounded, continuous, nonnegative solu-
tions to (1.1) that have initial data with compact support are sought in infinitely
extended regions. In analyzing such solutions it is necessary to consider the points of
singular behavior where h — 0. One common approach is to identify such points as
interfaces and to only solve the governing PDE on regions between interfaces where h
is nonzero. The motions of the interfaces are then determined as part of the solution
to the problem by insisting that A is zero at the interfaces and that the interfaces
move in such a way that the flux of i through them is zero. (See [6] for a derivation
of condition (1.3).) These conditions along with the specification of an initial config-
uration of h complete the problem definition. Using the notation s(t) to denote the
location of the left interface at any given time, the boundary and initial conditions
may be written as

(1.2) h=0 at z=s(t),
ds ,._,0h 9 o) B

and initial data as
(1.4) h(z,0) = ho(x)

determining the initial position of the interface, s(0). Note that two conditions anal-
ogous to (1.2) and (1.3) must also be imposed to determine the motion of the right
interface of the solution.

Properties of (1.1) have been extensively examined by previous authors. See [13]
and the bibliography therein for results on existence and uniqueness of solutions.
The behavior of solutions depends critically on the values of m and ¢q. One result
which is particularly relevant to this study states that when m < 0, solutions with
initial conditions that have compact support have interfaces that move at an infinite
velocity. By contrast, if m > 0, the interfaces propagate with a finite velocity [10].
Another important result states that for ¢ > 0 receding interfaces can exist [6]. In
this context a receding interface refers to circumstances where the interface moves
in a way that decreases the size of the region of compact support of the solution.
For the case m > 0 and 0 < ¢ < 1 it has been shown that h(z,t) = 0 for all z
after some finite time, so that the problem displays so-called finite extinction time [5],
[12]. The asymptotic behavior of the solution near this extinction time was studied
in [8], where it was shown that if m — ¢ > 0 the behavior is completely dominated
by absorption. However, if m — ¢ < 0, there are regions near the edge of the support
where diffusion becomes important. In [15] a generalized version of (1.1) was studied
where the growth and connectedness of the support of solutions as ¢t — +oc could be
determined. It was shown that the compact support can either remain bounded or
become unbounded as t — +o00, depending on the parameters m and g. Predictions
for the rate of growth of the compact support were also derived.

Other authors have obtained exact solutions for several special choices of m and q.
Essentially, solutions can be found in the case m + ¢ = 0, since the effects of diffu-
sion and absorption are matched in the sense that both are proportional to A1,
Similarly, in the case ¢ = 0 the absorption and time derivative terms are matched in
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the sense that both are proportional to h. Another special case in which an exact
solution can be found occurs when m — ¢+ 1 = 0 [14]. In [11] separation of variables
and self-similar reductions were used to reduce (1.1) to various ODEs. For two of
these ODEs first integrals and exact solutions are obtained. In [19] a special exact
solution to a generalization of (1.1) in more than one dimension was found by means
of a self-similar reduction to the governing equation. In [20] an exact solution was
found for the special case m = 1 and ¢ = 0 by transforming the spatial coordinates.
In the same study another exact solution was found for the case m = 1 and ¢ = 1
by means of separation of variables. In [18] a numerical scheme is developed to find
approximate solutions to (1.1). The numerical solutions are compared to one of the
aforementioned exact solutions and a good agreement is shown between the two.

Other relevant studies include [3] and [16], in which the problem of waiting time
was considered. This refers to the phenomenon exhibited by the purely diffusive
version of (1.1) (i.e., without the term h'~7 in the PDE) with m > 0 where interfaces
can remain stationary for some finite time and then begin to move. Using a self-
similar reduction to the governing equation, local solutions are found which describe
the change in the behavior of the interface.

The authors’ original interest in equations of this type came about when modeling
the spreading of a viscous film over a horizontal plate under the action of gravity
and subject to evaporation. An outline of the derivation of the model is given in
section 1.1 and gives rise to (1.1) with m = 3 and ¢ = 1. Initial analysis of this
model was concentrated on looking for approximate traveling wave solutions local to
the interface. The notation s(t) was used to denote the location of the left interface
at any given time. By transforming to a coordinate system local to this interface
by writing « = s(t) + £ the following PDE in the neighborhood of the interface was
derived:

15) oh  dsoh D <h38h> L

ot dtoe  9E\ 0¢

From (1.5) it is relatively straightforward to see that a balance between the second
term on the left-hand side (LHS) and the first term on the RHS of (1.5) gives rise to
a local advancing traveling wave solution of the form

ds 1/3 ds 1/3
(1.6) hN(—:)E) 3 e, hw(—3§) (x—st)? as x—s(t)*.

Furthermore, a balance between the second term on the LHS and the second term on
the RHS of (1.5) gives rise to a receding local traveling wave solution of the form

(1.7) h~(%>lg, ie., hw(%)l(x—s(t)) as x — s(t)*t.

In addition to this local analysis, numerical experiments were carried out that indi-
cated, for certain initial conditions, numerical solutions exhibit a behavior in which
the interface of the solution would change its direction of propagation. Throughout
this study such a phenomenon is referred to as the reversing of an interface. Although
the reversing behavior of solutions to (1.1) has been observed numerically and some of
the aforementioned exact solutions also exhibit this behavior, there appears to be no
analytical explanation of how this occurs in the general case [17], [18]. In other words,
there appears to be no analytical explanation of how the advancing wave (1.6) gives
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way to the receding wave (1.7). With this in mind, an approach is taken in this study
similar to that used in [16], namely, to seek solutions to (1.1) local to the interface
and local to the reversing time. To find such solutions a self-similar reduction will be
made to (1.1) in the parameter regime m > 0, ¢ > 0 and m — ¢ > 0. The first of these
restrictions ensures that the interfaces propagate with a finite velocity [10], while the
second allows the existence of receding interfaces [6]. It will become apparent that
the third means that an advancing interface moves due to a balance between the time
derivative and diffusion. Conversely, a receding interface moves due to a balance be-
tween the time derivative and absorption. Note that an interface may reverse even if
the third restriction is not satisfied—however, it appears that if m —q < 0 the solution
local to the interface and local to the reversing time will behave differently from the
case studied here.

For algebraic clarity the origins of time and space are chosen so that the reversing
time is ¢ = 0 when the position of the interface is s(0) = 0. Additionally we assume,
without loss of generality, that h is nonzero in x > 0 and h is zero for all x < 0.
Throughout this study it is assumed that s(¢) and its first derivative are continuous.
While this seems to be a physically sensible assumption, there appears to be no
rigorous proofs on this behavior. To find a suitable similarity reduction the authors,
refer to [7], which, by consideration of classical point symmetries of (1.1), lists possible
reductions for equations of this type. Included in this list is a reduction of the form

(1.8) h=(+t)*H(¢) with ¢=a(+t)’ and s(t) = A(+t)"?,

where A is an arbitrary constant and « and 3 are constants that are fixed by the expo-
nents m and ¢. Later in this work it will be seen that « = 1/q and 8 = —(m + q)/2q.
Though in [7] other reductions to (1.1) are derived, these are unsuitable to describe
the reversing behavior since they necessarily give a discontinuity in the velocity of
the interface as t passes through zero. It is noted, however, that some of these other
reductions do give a sensible behavior of the solution away from ¢ = 0. The form
of (1.8) means that the position of the interface moves in proportion to (4t)~? with
B < —1 (since m > 0, ¢ > 0 and m — ¢ > 0) and hence the velocity of the interface
changes smoothly as ¢ passes through zero.

The analysis is split into two sections. In section 2 the solution for ¢ < 0 (with
an advancing interface) is studied. Using a self-similar reduction of the form (1.8)
to (1.1) an ODE is derived for the dependent self-similar variable H as a function
of ¢. The asymptotic behavior of solutions to this ODE as H — 0T and ¢ — 400
are examined by assuming a power-law type expansion in each limit. In section 3 a
similar analysis is carried out for the solution with ¢ > 0 (and a receding interface).
In order to close the problem continuity of h across ¢ = 0 is enforced so that h is
continuous as the interface changes its direction of propagation. This is equivalent
to insisting that the solutions both prior to and after the reversing time have the
same asymptotic behavior as ¢ — +o0o. In section 4 a numerical scheme which makes
use of the determined asymptotic behaviors is proposed to determine solutions local
tox = 0 and t = 0. (See [21] for another example of applying this technique.)
In sections 4.1, 4.2, and 4.3 this algorithm is demonstrated using several physically
motivated examples. Section 4.4 discusses the practicalities of finding solutions for
other pairs of values of m and ¢. Finally, in section 5 the results and conclusions are
discussed. Before proceeding to analyze (1.1) a physical application that leads to a
reversing interface of the type outlined above is discussed.
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Fic. 1.1. Definition diagram for the slow spreading of a viscous film over a plate with evaporation.

1.1. The slow spreading of a viscous film with evaporation. Consider the
slow spreading of a Newtonian viscous film along a fixed horizontal plate under the
action of gravity and subject to evaporation. The definition diagram for the flow is
shown in Figure 1.1. By assuming that the Reynolds number is sufficiently small that
inertial effects can be neglected the equations of momentum and continuity are

(1.9) Vp=uVu—pg, V-u=0.

Here p is the pressure, p is the dynamic viscosity of the fluid, u = (u,v) is the
velocity vector, p is the density of the fluid, and g is the acceleration due to gravity.
The no-slip boundary condition between the film and the plate is

(1.10) u=0 on y=0.

It is assumed that the capillary number, Ca = puV~~! (where V is the velocity scale
of the flow and + is the interfacial tension), is sufficiently large so that surface tension
effects are negligible. The free surface of the film is modeled as stress free and assumed
to satisfy a modified kinematic condition which takes into account the loss of fluid
due to a constant evaporation normal to the free surface. Hence
(1.11) tTn=n'Tn=0 and v—% zu%—l—% on y=n(z,t).
Here a prime denotes transpose, y = n(z, t) is the free surface of the film, t and n are
vectors tangential and normal to the surface y = n(z,t), @ is the evaporation rate
per unit area, and T is the stress tensor (defined in the usual way).

Assuming that the film is slender motivates the nondimensionalization x = Lz,
y = eLg and n = eL7f. Here L is a typical length of the film and ¢ < 1 is the ratio
of typical depth to typical length. An as yet undetermined horizontal velocity scale
for the flow is introduced by writing u = uou. In order to conserve mass the vertical
velocity scale is v = eupv. Pressure and time are scaled the natural way by writing
p = pgelp and t = Lug '#. So that the pressure in the film is hydrostatic (to leading
order in ¢) this sets the undetermined velocity scale ug = pge3L?u~1. To leading
order in e the system of equations (1.9), (1.10), and (1.11) may be written as

op o*u  Op ou  0v
(1.13) Gi=05=0 on =0,

ou _ . Q _ _on  0On o
(1.14) 8@7_0’ p=0, and o euop_u3§3+8f on ¢ =1(Z,1).
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The system of equations (1.12), (1.13), and (1.14) can be solved to obtain @ and v
in terms of § and 7. Substitution of these solutions into the third equation in (1.14)
yields the following equation for 7:

on_ 0 (501\  Q
(1.15) ot 0z <77 83:) €upp’

This nonlinear PDE for the free surface of the film 7(Z, ) contains one nondimensional
parameter, Qe’lualpfl, that gives a measure of the ratio of the spreading rate to

the evaporation rate. Equation (1.15) can be reduced to an equation of type (1.1) for
7i(z*,t*) with m = 3 and ¢ = 1 by writing

_ €upp _ €upp
1.16 t= t* and I = x*.
(1.16) 0 V0

2. Prior to the reversing time. In this section analysis is concentrated on
solutions to (1.1) when ¢ < 0 and the interface is advancing. As discussed in section 1
a similarity reduction of the form
(2.1)

h=(-t)Y1H(¢), where ¢=ax(—t)"mFTD/27 and s(t) = A(—t)mFD/2

is employed. Here A is an undetermined constant. Using (2.1), (1.1) and its corre-
sponding local boundary condition reduce to

1
(2.2) —~H+ m2—+q oH' = (H™H') — H™7 with H(A) = 0.
q q
Equation (2.2) readily admits one nontrivial exact solution
1/(m+
(2.3) H = <M> [ @2/ (m+a),
22+ m—gq)

However, (2.3) has H(0) = 0 and as such cannot lead to a solution to (1.1) that
exhibits reversing behavior. Hence, other solutions to (2.2) must be sought. To this
end the asymptotic behavior of solutions near ¢ = A and as ¢ — +00 are examined.
As ¢ — AT an asymptotic solution that has the form of a power-law is sought. It is
found that

1/m
(2.4) Hw(m;(;qu) (6—AY™ as ¢ — At

The prefactor of the asymptotic behavior (2.4) depends on the values of both m and
q, whereas the exponent depends on the value of m only. Physically this may be
understood by noting that interfaces of solutions to (1.1) advance due to diffusion.
Since the solution prior to the reversing time has an advancing interface it may not
come as a complete surprise that the value of m largely determines the behavior of
the solution close to the interface.

In the far field a solution that has the form of a power-law is also sought. It is
found that

(2.5) H ~ N¢¥(m+d) a5 ¢ — 400.

Here N is an undetermined constant. A natural question to ask is whether there are
solutions to (2.2) that have the behavior (2.4) near ¢ = A and reach the behavior
(2.5) in the far field. In addition one may also wish to know whether there is an
infinite family, countably many or a unique solution with these behaviors. One ad
hoc approach to answering this question (which will subsequently be shown to be a
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correct approach in this case) is to implement a numerical shooting scheme to integrate
(2.2) from near ¢ = A using (2.4) toward the far field. The value of A can then be
adjusted as a shooting parameter with the aim of reaching a solution with behavior
(2.5) in the far field. Alternatively one could integrate (2.2) numerically from the far
field using (2.5) and adjust the value of N as a shooting parameter with the aim of
reaching a solution with behavior (2.4) near ¢ = A. The results of such numerical
experiments are shown in Figures 4.1 and 4.2. From these results one might conclude
that there is only one solution with the aforementioned behaviors; however, this is
rather naive. In order to support this claim the authors carry out a more thorough
analysis near the point ¢ = A and as ¢ — 4o00. The approach will be to linearize
about a particular solution H by writing

(2.6) H=H+H

and requiring that H; < H. Using (2.2) and (2.6) the following second order linear
homogeneous ODE for H; is derived for Hi:

m—+q

5 OHi = (A" H} + mHH" 'H') — (1—q)H *H,.
q

1
(2.7) —aHl +

By examining the possible asymptotic solutions for H; the number of adjustable
parameters, or degrees of freedom, when implementing a shooting scheme will be
determined.

First consider the asymptotic behavior (2.4) near ¢ = A. Linearizing about this,

1/m
(2.8) H~<m2—:qu> (6—AY™ 1L H as ¢— AT,

and substituting into (2.2) leads to a second order linear homogeneous ODE for H;
with the following possible asymptotic behaviors:

(2.9) Hy~ M (p—AY™™Y or Hy~ M, as ¢ — At

Here M, and My are undetermined constants. The first behavior in (2.9) corresponds
to changing A in (2.4) by a small amount. This can be seen by performing a Taylor
expansion on (2.4) for small adjustments to A. Hence without loss of generality M,
can be set equal to zero. The second behavior in (2.9) is necessarily larger than (2.4)
in the limit that ¢ — A1 unless My is zero. Hence the solution with My = 0 is
required. Therefore there is an adjustable parameter (degree of freedom) only when
shooting from near ¢ = A, namely, the value of A.

An analogous analysis in the far field is performed by linearizing about the asymp-
totic behavior (2.5) by writing

(2.10) H~ N0 L H as ¢ — 4o0.

As before this leads to a second order linear homogeneous ODE for H; with the
following possible asymptotic behaviors:

2
Hy ~ N1¢?/ (™40 or  Hy ~ Nyexp (%N—mng/(m-kq))

(2.11) as ¢ — +oo.
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Here N7 and Ny are undetermined constants. The first behavior in (2.11) is the same
as (2.5); hence, without loss of generality N; is set equal to zero. For sufficiently large
¢ the second behavior in (2.11) becomes larger than (2.5) unless N3 is zero. Hence
the solution with Ny = 0 is required. It is noted that numerical evidence suggests
that solutions that do deviate from (2.5) (with N3 nonzero) have H = 0 at some large
but finite ¢. Hence, such solutions are not viable in this problem. Therefore there is
only one adjustable parameter (degree of freedom) when shooting from the far field,
namely, the value of N.

Having determined the adjustable parameters near ¢ = A and as ¢ — +o0o the
shooting problem from near ¢ = A is reconsidered. Picking a particular value of A
one might expect that for some large but finite ¢

(2.12) H ~ N¢?/(m+0) L N, exp <%N’”¢2W <m+Q>) .
Hence as ¢ continues to grow the solution will deviate from the behavior (2.5) unless
N = 0. Examples of such solutions can be seen in Figure 4.1. Thus it is anticipated
that there are at most countably many values of A that correspond to the far field
behavior (2.5).

Alternatively, consider the shooting problem from the far field. Picking a partic-
ular value of N one might expect that for some small but nonzero H

1/m
(2.13) H~ (m2—J;qu> (¢ — A)Y™ 4 M.

Hence the solution deviates from the behavior (2.4) unless My = 0. Examples of such
solutions can be seen in Figure 4.2. Therefore it is expected that there are at most
countably many values of N that correspond to the behavior (2.4) near ¢ = A.

3. After the reversing time. In this section analysis is concentrated on (1.1)
when ¢ > 0 and the interface is receding. In this case a reduction of the same form as
that used in section 2 is employed, taking care that ¢ is now positive:

(3.1) h=tY1H($¢) where ¢=axt="TD/20 and s(t) = Btm+o/2a,

Here B is an undetermined constant. Using (3.1), (1.1) and its corresponding local
boundary condition reduce to

(3.2) 1y _m+tq

5 ¢H' = (H™H') — H'"% with H(B)=0.
q q

This second order nonlinear ODE does not readily admit any exact nontrivial solutions
aside from (2.3). Hence, in a manner similar to the previous section, the asymptotic
behavior of solutions to (3.2) near ¢ = B and as ¢ — +oo are examined. As ¢ — BT,
the behavior is examined by assuming a power-law type expansion. It is found that

—1/
(3.3) H~ (W;;;QB) "By

The prefactor of the asymptotic behavior (2.4) depends on the values of both m and
q, whereas the exponent depends on the value of ¢ only. Physically this may be
understood by noting that interfaces of solutions to (1.1) recede due to absorption
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effects. Since the solution after the reversing time has a receding interface it may not
be unexpected that the value of g largely determines the behavior of the solution close
to the interface.

As ¢ — 400 the asymptotic behavior is also examined by assuming a power-law
type expansion. It is found that

(3.4) H ~ Q¢ (m+a),

Here @ is an undetermined constant. For reasons that have been discussed in section 2
the authors now linearize about the asymptotic solutions (3.3) and (3.4). Linearizing
about (3.3) using

—1/q
+
(3.5) H~ <m2q2q3) (¢— B)Y*+ H,

and substituting into (3.2) leads to a second order linear homogeneous ODE for H;
with the following asymptotic behaviors:

Hy ~ Py(¢ — B)M/D~1
m/q
or Hy ~ Pyexp ((E) m—+q <m+qB> (¢_B)(mq)/q>

2 ) m—q\ 2¢2

(3.6) as ¢ — BT,

The first behavior in (3.6) corresponds to a small change in B in the behavior (3.3).
This can be seen by performing a Taylor expansion on (3.3) for small adjustments
to B. Hence, without loss of generality P is set equal to zero. The second behavior
in (3.6) becomes larger than (3.3) in the limit ¢ — BT unless P, is zero. Hence the
solution with P» = 0 is required. Therefore there is only one adjustable parameter
(degree of freedom) when shooting from near ¢ = B, namely, the value of B.

The solution (3.4) in the far field is linearized about by writing

(3.7) H ~ Q¥ (m+ad) 4 F, .

Again this leads to a second order linear homogeneous ODE for H; with the following
asymptotic behavior:

(3.8) Hy ~ Q146%™ or Hy ~ Qzexp <—%Q_m¢2q/(m+q)) -
The first behavior in (3.8) is the same as (3.4) and so without loss of generality ()1 is
set equal to zero. To fix values for @ and ()s it is necessary to discuss a condition of
continuity which should be imposed on the solution. On physical grounds it must be
insisted that the concentration h is continuous as ¢ passes through zero. In terms of
the self-similar variables this is equivalent, requiring that solutions to (2.2) and (3.2)
have the same behavior as ¢ — +oo corresponding to t — 07 and t — 0. It was
shown in the previous section that solutions to (2.2) take the form (2.5) in the far
field. Therefore, continuity across ¢t = 0 requires that the solution to (3.2) has Q@ = N.
Now consider the shooting problem from near ¢ = B. Picking a value of B one
might expect that for some large but finite ¢

(3.9) H ~ Q¢* "9 + Qs exp (—%Qméf’zq“mﬂv ,
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The value of B must be adjusted as a shooting parameter until the behavior (3.9)
with @ = N is reached in the limit that ¢ — +o0o. By doing this a value for Qs
is also fixed; however, in the far field limit the second term in (3.9) tends to zero,
independent of Q2. As before one expects there to be at most countably many values
of B which correspond to the requisite behavior (3.4) with @ = N in the far field.

Alternatively, consider the shooting problem from the far field. Fixing the value of
@ = N (by virtue of the condition of continuity across ¢ = 0) and picking a particular
value of Q2 one might expect that for some small but nonzero H,

—1/q
m+q /g
" < 2¢* B) (¢=5)

(3.10) + Pyexp <<§) m+gq (m+ qB)m/q - B)_(m—q)/q> .

m—q \ 2q¢>

Hence the solution deviates from (3.3) unless P, = 0. Therefore it is expected that
there are at most countably many values of ()2 that correspond to P, = 0.

4. A numerical shooting scheme. In this section a numerical algorithm is
proposed to construct solutions to (1.1) local to the interface and local to the reversing
time. The approach is to use the asymptotic behaviors (2.4) and (2.5) to formulate
an initial value problem for the ODE (2.2). A similar method is then used for the
asymptotic behaviors (3.3) and (3.9) and the ODE (3.2). These can then be integrated
numerically using the ODE45 package in MATLAB [22]. The details of the method
are set out below.

e The solution for ¢ < 0 can be determined using two different shooting schemes:
(i) using the form shown in (2.4) to construct initial values for H and H’ so
that (2.2) can be integrated from ¢ = A toward the far field or (ii) using the
form shown in (2.5) to form initial values for H and H’ so that (2.2) can be
integrated from the far field toward ¢ = A. However, shooting in either of
the aforementioned directions is inherently unstable. In case (i) this is due to
the exponentially large term in (2.11) and in case (ii) is due to the constant
M in (2.9). Hence, in practice it is necessary to shoot both from ¢ = A
adjusting A as a shooting parameter and from the far field adjusting N as a
shooting parameter. By adjusting A and N correctly two solution curves (one
using shooting method (i) and the other using method (ii)) can be obtained
that agree (to within some small error tolerance) on a significant range of ¢
between A and the far field; see, for example, Figure 4.1. It is then reasonable
to assume the required solution is very well approximated by solution (i) for
¢ near A and by (ii) in the far field.

e The solution for ¢ < 0 is then fully determined. It is now necessary that the
behavior of the solution as ¢ — +o0o does not change as t passes through zero
(and hence the concentration, h, is continuous) so a solution for ¢ > 0 must
be found with Q = N.

e The solution for ¢t > 0 can be determined using two different shooting schemes:
(i) using (3.3) to construct initial values for H and H’ so that (3.2) can be
integrated from ¢ = B toward the far field or (ii) using (3.9) to construct
initial values for H and H’ so that (3.2) can be integrated from the far field
toward ¢ = B. Due to the presence of the exponentially large term in (3.6),
shooting in direction (ii) is inherently unstable. Therefore, in practice it may
be necessary to shoot both from ¢ = B adjusting B as a shooting parameter
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Fic. 4.1. Plot of H vs ¢ for t < 0 for (1.1) with m = 3 and ¢ = 1. The dashed and dotted
curves show the solution computed by integrating (2.2) from ¢ = A with A = 0.14397765 + 5 X
10~8 respectively. It is noted that the dashed curve shows H tending to infinity in the negative
direction whilst the dotted curve shows H tending to infinity in the positive direction corresponding to
corresponding to negative and positive values of No. Therefore it is anticipated, although not proven,
that the exact value of A which corresponds to No = 0 lies in the range 0.14397765+5 x 10~8. The
solid line shows the solution computed from integrating from ¢ = 300 with a value of N = 1.1435.

and from the far field adjusting Q2. By adjusting B and Q)2 correctly, two
solution curves (one using shooting method (i) and the other using method
(ii)) can be obtained that agree on a significant range of ¢ between B and the
far field. As before, it is then reasonable to assume that the required solution
is very well approximated by the solution (i) near ¢ = A and the solution (ii)
in the far field.

4.1. The solution for m = 3 and g = 1: A spreading viscous film with
evaporation. To demonstrate the method proposed in section 4, the example that
originally motivated this study is used, that is, (1.1) with m = 3 and ¢ = 1. In this
case the forms (2.4), (2.5), (3.3), and (3.4) reduce to

(4.1) H~ (64)3(p— AY? as ¢ —» AT for t <0,
(4.2) H~N¢'? as ¢ — +oo for t<O0,

(4.3) H~ %W—B) as ¢ — Bt for t>0,

(4.4) H~Q¢'? and as ¢ — +oo for t>0.

Using the numerical algorithm outlined above with the default settings in the ODE45
suite in MATLAB the following values are determined:

(4.5) A~ 0.1440, B ~0.0958, and N = Q ~ 1.1435.

As the absolute error tolerances were reduced below the ODE45 default value of
10~% there were no appreciable changes in the computed solutions. The results of
the numerical computations are shown in Figures 4.1 and 4.2. Figure 4.3 has been
included to show that the condition of continuity across ¢ = 0 has been satisfied.
Other numerical computations were carried out for a large range of values of the
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35F o

Fic. 4.2. Plot of H vs. ¢ for t > 0 for (1.1) with m = 3 and ¢ = 1. The dashed curve shows
the solution computed by integrating (2.2) from ¢ = 30 with Q@ = 1.1435 and Q2 = —16507. The
dotted curve shows the solution computed by integrating (2.2) from ¢ = 30 with Q = 1.1435 and
Q2 = —16508. Although the dotted curve may appear to have the requisite behavior as H becomes
small, the solution computed by integrating (2.2) using the corresponding value of A diverges from
the required behavior in the far field. The solid line shows the solution computed from integrating
from ¢ = B with a value of B = 0.0958.
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FiG. 4.3. Plot of H/(i)l/2 vs. ¢ for (1.1) with m = 3 and ¢ = 1. The solid curve shows the
solution for t > 0, the dashed curve shows the solution for t < 0, and the dotted curve shows N¢t/2
vS. (151/2.

shooting parameters A and N. It was found in all cases that the deviation from the
required behavior was monotone in the shooting parameter. Although this is not a
formal proof, the numerical evidence strongly suggests that the above values of A, B,
N, and @ are unique. Figures 4.4 and 4.5 have been included to show the evolution
of the solution h(z,t) and the position of the interface during this evolution.

4.2. The solution for m = 2 and ¢ = 1: A population with constant
death rate. For a second demonstration of the numerical scheme proposed in sec-
tion 4 a population model is considered. Many population studies use (1.1) with
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Fi1G. 4.4. Plot of h vs. x for (1.1) with m = 3 and q = 1. The solution has been plotted at 20
equally spaced times between t = —1 and t = 1. The solid curves show the solution for t < 0 and
the dashed curves for t > 0.

0.16 T T T

0.5 1

Fic. 4.5. Plot of s vs. t for (1.1) with m = 3 and ¢ = 1. The position of the interface as a
function of time.

m = 2 to model the movement of a species; see, for example, [4] and the bibliography
therein. The derivation of such models is based on the assumption that the dispersion
of organisms in a species is prevalent in regions that are densely populated. For sim-
plicity the case of a population subject to a constant death rate is considered. This
gives rise to (1.1) with ¢ = 1. In this case the forms (2.4), (2.5), (3.3), and (3.4)
reduce to

H~ 3A)Y2(p— AY? as ¢ — AT for t<0,
H~N¢?® as ¢ — +oo for t<O0,

2 +
H~3—B(¢—B) as ¢ — BT for t>0,
H~Q¢*® and as ¢ — +oo for t>0.
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F1G. 4.6. Plot of h vs. x for (1.1) with m = 2 and q = 1. The solution has been plotted at 10
equally spaced times between t = —1 and t = 1. The solid curves show the solution for t < 0 and
the dashed curves for t > 0.

Using the numerical algorithm outlined in section 4 and the default settings in ODE45,
the following values are determined:

(4.10) A~ 0.001354, B =0.01022, and N = @ =~ 1.1445.
The convergence and uniqueness checks in section 4.1 were carried out. A plot of the
solution is shown in Figure 4.6.

4.3. The solution for m = 4 and q = 1: Nonlinear heat conduction
with absorption. For a further demonstration of the numerical scheme set up in
section 4 a nonlinear heat conduction problem is considered. Previous authors have
modeled the dissipation of heat in media where heat flow is due to radiation and the
material is optically thick. For example, Zel’dovich and Raizer studied a problem in
which the relevant model was (1.1) with m = 4 and ¢ = 1 [23]. In this case the forms
(2.4), (2.5), (3.3), and (3.4) reduce to

H~ (10A)Y4p - AV* as ¢ — AT for t <0,
H~N@*® as ¢ — +oo for t<0,

2
H~5—B(¢—B) as ¢ — Bt for t>0,
H~Q¢*> and as ¢ — +oo for t>0.

Using the numerical algorithm outlined in section 4 and the default settings in ODE45,
the following values are determined:

(4.15) A~ 0.3859, B~ 0.3405, and N = Q ~ 1.0101.

The convergence and uniqueness checks in section 4.1 were carried out. A plot of the
solution is shown in Figure 4.7.

4.4. Others values of q. It has been shown that there is a similarity reduction
to (1.1) capable of describing reversing behavior for parameters in the range m > 0,
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0.7r

FiG. 4.7. Plot of h vs. z for (1.1) with m =4 and q = 1. The solution has been plotted at 10
equally spaced times between t = —1 and t = 1. The solid curves show the solution for t < 0 and
the dashed curves for t > 0.

q > 0,and m—q > 0. The work in sections 4.1, 4.2, and 4.3 has demonstrated that this
reduction leads to meaningful reversing similarity solutions in the cases when m = 3
and ¢ = 1, when m = 2 and ¢ = 1, and when m = 4 and ¢ = 1. Further numerical
experimentation has indicated that it is also possible to find reversing solutions for
all values of m > 1 and ¢ = 1.

However, whether this is the case for all pairs of values m and ¢ in the range
m >0, ¢ >0, and m — g > 0 remains an open question. Hence, this section discusses
the practicalities of finding solutions to the ODEs (2.2) and (3.2) that satisfy the
condition of continuity across t = 0 when g #£ 1.

To explore this question we first set m = 3 and allow ¢ to increase above 1.
Carrying out the numerical scheme outlined in section 4 has revealed that when
1 < g < g3 (where g3 ~ 1.1) it is possible to find solutions to (2.2) and (3.2) with non-
zero values of the parameters A and B and with Q = N in the far field. Hence, this
leads to solutions that describe reversing behavior of solutions to (1.1); see Figure 4.8.
However, when g > ¢3 it appears that the value of B = 0 and hence the only solution
to the problem for ¢ > 0 is the exact solution (2.3); see Figure 4.9. Furthermore,
it is not possible to find a solution to (2.2) that satisfies the condition of continuity
across t = 0 (i.e., it is not possible to find solutions with @ = N). Therefore,
it is conjectured, but not proved, that the self-similar solution ceases to exist for
q > q3.

Other interesting behavior has been observed by holding m = 3 and decreasing ¢
below 1. In this case it appears that the only solution to (2.2) is the exact solution
(2.3). Furthermore, when carrying out the numerical scheme outlined in section 4 it
has not been possible to find a solution to (3.2) with ¢ = N and a nonzero value of
B. Therefore, it is conjectured, but not proved, that the self-similar solution ceases
to exist for ¢ < 1.

Further numerical experimentation has been carried out for values of m # 3. It
appears that the lack of solutions for ¢ < 1 is generic for all values of m. It also
appears that for any given value of m there is a critical value of ¢, ¢,,, say, such that
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Fic. 4.8. Plot of h vs. x for (1.1) with m = 3 and ¢ = 1.05. The solution has been plotted at
10 equally spaced times between t = —1 and t = 1. The solid curves show the solution for t < 0 and

the dashed curves for t > 0.
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Fic. 4.9. Plot of B vs. q for m = 3.

if ¢ > g, then the self-similar solution does not exist. These conjectures are based
on numerical evidence and as such do not constitute rigorous proofs.

5. Discussion and conclusions. This study has been concerned with solutions
to the family of equations (1.1) with m > 0, ¢ > 0, and m — ¢ > 0. These restrictions
were placed on the exponents m and ¢ to ensure that the interfaces of the solution
travel with a finite velocity, that receding interfaces can exist, that an advancing
interface moves due to diffusion, and that a receding interface moves due to absorption.
In particular, solutions to these equations local to the interface and local to the
reversing time which give the generic behavior of a reversing interface have been
examined. By doing this, an analytical explanation of how an interface reversal occurs
has been given. Self-similar reductions were made to the governing equation (1.1) to
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derive ODEs for the dependent self-similar variable H as a function of ¢. The analysis
was split into two parts, one for the solution prior to the reversing time and the other
for the solution after the reversing time. In each case the asymptotic behavior of
solutions as H — 0" and as ¢ — +oo were studied. A numerical algorithm which
made use of the determined asymptotic behaviors was then put forward as a method
for furnishing solutions to (1.1) local to x = 0 and ¢ = 0. This algorithm was then
demonstrated using the examples of m = 3 and ¢ = 1, m = 2 and ¢ = 1, and
m = 4 and ¢ = 1. Finally, some remarks have been made on the existence and
practicalities of finding solutions for any pair of values of m and ¢ in the range under
consideration.

In section 2 the solution prior to the reversing time was studied. By making a self-
similar reduction to the governing equation a second order nonlinear ODE was derived
for the dependent self-similar variable H. By studying the asymptotic behaviors of
this ODE as ¢ — A" and as ¢ — 400 it was demonstrated that close to the interface
the solution takes the form

m+q Lfm 1/m
h(z,t) ~ (2—qu> (_t)(m*Q)/%nq (x — A(_t)(m+q)/2q)

(5.1)  as x— A(—t)mtD/2q

For large negative time this has the form of a traveling wave with velocity proportional
to t(m=9)/24_ From (5.1) it can also be seen that h increases proportional to z'/™ close
to this interface. It was also shown that the far field behavior of the solution is

(5.2) h(x,t) ~ Na?/(mFT0 g g(4)~mF0/20 4o,

Hence, local to the reversing time and close to, but away from, the interface, the
solution is stationary with behavior proportional to z2/(m+a),

In section 3 the solution after the reversing time was studied. In a similar fashion
to section 2 a self-similar reduction was made to the governing equation. By studying
the asymptotic behavior of solutions as ¢ — BT and as ¢ — +oo it was shown that
close to the interface

—1/q
h(z,t) ~ (m;zq B) §—(m—a)/2¢* (x_ Bt<m+q>/2q)”q

q
(5.3) as x — Bt(m+a/2,

It can again be seen that for large positive time this takes the form of a traveling
wave with velocity proportional to t("~9/24. Also, the concentration h close to the
interface increases proportional to z'/9. It was shown that the far field necessarily
took the same form as the solution prior to the reversing time, that is, proportional
to 22/(m+9)  Furthermore, so that the concentration h was continuous as ¢ passed
through zero, the constant of proportionality was chosen so that the far field behavior
was the same as that prior to the turning time.

In section 4 knowledge of the aforementioned asymptotic behaviors was used in
order to formulate a numerical algorithm to furnish meaningful solutions to (1.1).
This algorithm was demonstrated using the examples of (1.1) with m = 3 and ¢ = 1,
m=2and g =1, and m = 4 and ¢ = 1. In section 4.4 the practicalities of finding
solutions for all pairs of values of m and ¢ in the range of interest were considered.
Based on numerical evidence it has been conjectured that the self-similar solution
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proposed in this study does not exist when ¢ < 1. Furthermore, for each value of m
there exists a ¢, gm, say, such that for ¢ > ¢,, the self-solution does not exist.

Attention is also drawn to another notable result from the analysis that applies
to any equation of the form (1.1) with ¢ = 1. It appears that there is only one form of
reversing behavior for each value of m. The authors note that the asymptotic forms
(2.4), (2.5), (3.3), and (3.9) depend only on the values of m, A, B, N, @, and Q.
Numerical evidence suggests that all these values are uniquely determined for any
given equation in the family (1.1) with ¢ = 1. In other words, so long as the solution
exhibits a reversing of an interface at some time in its evolution, the solution local to
this interface and local to the reversing time is generic.

Finally, the authors discuss the implication of the results in the context of the
physical problems: the spreading of a viscous film under gravity and subject to evap-
oration, the dispersion of a population with constant death rate, and nonlinear heat
conduction with absorption. In each of these cases it has been shown that the behav-
ior near the interface changes dramatically as ¢ passes through zero. In particular, the
slope at the interface is infinite before ¢ = 0 and finite after ¢ = 0. Furthermore, while
the position of the interface is quadratic in time, the quadratic coefficient changes
as t passes through zero. In the case of a spreading viscous film, the film thickness
near an advancing interface is proportional to (z — s(t))'/? and the behavior of the
solution is largely dominated by diffusive effects. However, near a receding interface
the film thickness is proportional to (z — s(¢)) and the behavior is largely dominated
by evaporation. In the case of a dispersing population, the population density near an
advancing interface is proportional to (z —s(t))'/? and the behavior is largely dictated
by the effect of population pressure. However, near a receding interface the population
density tends to zero linearly and the behavior is controlled by the constant death rate
of the population. In the case of nonlinear heat conduction, the temperature near an
advancing interface is proportional to (z — s(t))'/* and the behavior near the interface
is dominated by diffusive effects. However, near a receding interface the temperature
is proportional to (z — s(t)) and the behavior is largely dictated by the absorption of
the heat into the medium. Any numerical scheme that attempts to solve (1.1) must
capture these nontrivial changes accurately. Therefore, (5.1), (5.2), and (5.3) provide
a way of validating such numerical scheme’s accuracy near the interface.
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