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This paper examines the industrial process popularly known as ‘pressure-swing
adsorption’ from both analytical and numerical points of view. After a derivation
of the equations of motion and a description of the important stages involved in
the process it is shown that for the case of a binary mixture the problem may be
treated analytically in constant-pressure stages, and simplified in variable-pressure
stages. This leads naturally to discussion of the N-species case where the
governing hyperbolic differential equations have some unusual features which
must be accommodated in numerical strategies. Some numerical calculations are
also reported, in which the analytical work plays a major part.

1. Iméroduction

PRESSURE-sWING adsorption (PSA) is a process used in many branches of the
chemical engineering industry to separate mixed gases. A stream of the gas
mixture is passed through one (or more) columns packed with a bed of granular
material having different affinities for the various gas components. A typical
production process involves cyclic changes in pressure and is controlled by a
sequence of adjustments to valves at the two ends of the column(s). Some stages
are constant-pressure ‘flow’ stages, others are ‘pressurization’ or ‘depressuriza-
tion’ stages in which the gas either enters or leaves the column(s) at one end only.
The number of operating arrangements is great, since enriched gas collected
from one stage may be used as feed at a later stage in the same or an interlinked
column. However, in all operating arrangements the physical and chemical
processes within a column are similar, so it is important to understand the
structure of the governing equations and to suggest versatile computational
procedures. For a specific operational scheme such procedures could then be used
to calculate the response to different pressurization and depressurization se-
quences, the eventual periodic response and the manner by which this is
approached. Important parameters such as the product purity and the specific
energy consumption could also be predicted.
The increasing usage of PSA processes as efficient and cost-effective methods
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© Oxford University Press 1988




166 D F. PARKER AND A, D FITT

for gas separation has given rise to a large literature on the subject, many existing
studies being of an experimental nature and concerning themselves with optimum
operating arrangements. An example of this is the recent study by Kapoor &
Yang (1988) who considered the optimization of a specific PSA cycle via an
interior penalty function, using a simplified equilibrium model. The study by
Sundaram & Wankat (1988) was concerned with rapid cycling so that the effects
of pressure drop along the column were minimized. Analysis was again
performed on a binary (two-component) mixture and some shocks were detected.
Recent quantitative studies include that of Hassan, Raghavan & Ruthven (1987),
who investigated a particular cycle for the production of nitrogen, and were able
to make some estimates of optimum yield rates. Hassan, Ruthven & Raghavan
(1986) had earlier considered a mathematical model of a binary mixture for a
2-bed, four-step PSA cycle. Under certain simplifying assumptions the partial
differential equations were reduced to a set of ordinary differential and nonlinear
algebraic equations which were solved by orthogonal collocation. Qualitative
agreement with experimental results was indicated.

A comiprehensive survey of applications of PSA processes, together with a
survey of analytical and numerjcal treatments of mathematical models and some
comparisons with experiment, has recently been completed by Kirkby & Kenney
(1988). This shows that in most treatments diffusive effects have been neglected
and that instantaneous equilibrium has also been assumed. For the production of
oxygen from air, Flores Fernandez & Kenney (1983) have shown these
assumptions to be reasonable. For general N-component gas mixtures these
assumptions yield a hyperbolic system of partial differential equations, which
normally are nonlinear. Previously published analyses (for example (Flores
Fernandez & Kenney, 1983; Mitchell & Shendalman, 1972; Chan, Hill & Wong,
1981)) have all treated binary mixtures, usually with simplifying assumptions
concerning the amount of each species adsorbed when the partial pressures are
specified. Another common assumption has been that the flow is isothermal,
though as noted below the inclusion of non-isothermal effects does not prove to
be a major complication. An example of a study which included temperature
effects was that performed by Chiang, Hwong, Lee and Chen (1988), who
considered 2 binary mixture. It is also worth noting that studies have been made
which include diffusive effects. Two recent examples of such PSA treatments are
given by Shin & Knaebel (1987) who considered diffusion with spherical
adsorbent particles, using lincar adsorption isotherms, and Doong and Yang
(1987), who considered N-component zeolite sorbents, simplifying the Fickian
diffusion equations for the two types of pore by assuming parabolic concentration
profiles for the crystals and pellets. Both studies showed qualitative agreement
with experiment.

On the present theory, all binary mixtures can be treated analytically in the
constant-pressure stages and can be reduced (via a transformation of the
‘hodograph’ type) to the solution of a pair of linear, first-order hyperbolic
equations in the pressurization and depressurization stages, These treatments
demonstrate features which will be present in N-component processes and which
a general numerical strategy must accommodate. In particular, one of the
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characteristic speeds is always infinite, so that a time-marching scheme must be
chosen carefully (neglect of inertial effects means that flow speeds at all column
cross-sections are interrelated at cach instant). Also, nonlinearity means that
abrupt jumps or ‘concentration shocks’ are liable to form and then propagate
along the column.

After derivation of the governing equations for an N-component mixture and
analysis of the above features, the paper divides into two parts. The first,
consisting of sections 4 and 5, gives details of the analytic procedure for the
binary mixture. The second, consisting of sections 6.1 and 6.2, discusses a
numerical approach in which the analytical work plays a major part.

2. The mathematical model

In a one-dimensional treatment of an adsorbent-packed colummn 0<z <L
having cross-sectional area A, void fraction &, total gas density p and mean flow
speed u, the mass flow rate is m = eApu. If y, denotes the volume fraction of the
species §; in the gas mixture, then c; = py; and p; = ROc; are the concentration and
the partial pressure of S;, while the total pressure is p = pR6, where 6 is the
temperature, R is the gas constant and

N N
p=21p1, Zly,:l- 2.1)

Inertial and flow-resistance effects are neglected, so that p = p(¢) is uniform along
the column at each instant, Changes in the temperature 6 also are neglected,
though it is worth noting that little of the analysis is changed by the addition of
the temperature equation, and we choose to make this assumption only for
reasons of clarity. With this simplification we find that

p=p()= gl &, p(t)y=ROp(). 2.2)

At a given cross-section z the adsorbed mass of S; is taken to be in
instantaneous chemical equilibrium with the partial pressures {p;} at (z,?).
When the adsorbed mass of §; per unit volume of adsorbent is written as
e(1 — &) '¢Ki(p;, ), the total mass of the species S; per unit length of the
column becomes

eA(l + K))c,=eAQ/(c, 6).

The mass balance equation for each species §; is

& )
— (eAQ) +— ) =
6‘t(£ Q.)+az(sApy,u) 0,

ar ( ) a ( ) l]EIE C ) 2 3
Qi c ltct D ( c ( J') ( ' )

since dependence on & is suppressed in this isothermal model. Summing
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equations (2.3) and using (2.2) gives the continuity equation

Na'
EQ

32 o5 =0, 2.4

which relates the divergence of the flow velocity 1 to the rates of increase of the
total concentrations (; at each cross-section. Equation (2.4) may be used to
eliminate all detivatives of u from the system (2.3), so yielding

N N de. e,
E(QU—EEQm,)—CJwﬁ:o, i=1,2,...,N, 2.5)
\ pm:I ot

=1 8z
where (; denotes the partial derivatives

Q Q = Qq (C)

In equatlons (2.3), (2.4) and (2. 5) the equilibrium capacities K{(p, 8), and
consequently the functions Q;(c, 8), are described by ‘adsorption isotherms’
which characterize the adsorbent material and the various species present in the
gas mixture. Many workers (see (Kirkby and Kenney, 1988)) assume linear
independent isotherms k; = const, while others use either Freundlich isotherms
(see, for example, (Atkins, 1978)), in which

N
SakKep?  (y<1)
i=1

with the K;in fixed ratios K;=k,K (k; = const), or Langmuir isotherms (Richter
et al., 1982) for which

ak; B
1+ EI 1K 1 + Z,{Y—-l Ju’jcf,

where a, k; and p;,=R0Ok,, B=a/RO are constants. This latter case yields
expressions for the coefficients in (2.5) as

K=

(2.6)

_ O
0;=(1+K)%; (1 Y poy 2.7

In all cases, the quantities Q; depend only on ¢, so that equations (2.4) and
(2.5) reveal many of the important features of the system governing isothermal
PSA cycles, as follows.

1. Since all terms in (2.4) and (2.5) involve first derivatives, the system of
N + 1 equations for ¢; (i=1, 2,. .., N) and u defines no natural scale of time.

2. The system is invariant under transformations of the type

t— (1), uiz, )— r( 2 =u(z, 1)

Time behaves purely as a label for successive states of the system. At each
instant, the states are always taken to be in chemical equilibrium, with mass
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transport
SAJ cudt= sAJ cudr

of the ith species determined solely by continuity requirements. The time scale
during each process stage is determined by the history of mass flux at one of the
open ends, z=0, or z= L.

3. Equilibrium considerations show that the system of partial differential
equations is hyperbolic. However, one of the characteristic speeds is infinite,
since summation of the equations (2.5) gives

S

219z

b4

consistently with (2.2). In the (z, t)-plane, each line ¢ = const is characteristic.
4. The remaining (finite) characteristic speeds of the system (2.5) have the
form

dz

LZ_vo =L,
dt A¢)
where A" is one of the {non-zero) eigenvalues of the (singular) matrix A having
elements

r=12,...,N—1,

N
G
Ay=05=7 2 Oy =A4(c). 2.8)
Since, in matrix notation, equation (2.5) has the form
de¢  dc
A= +u==
e u 5z 0; (2.53)
premultiplication by the left-eigenvector 1©7 corresponding to A”
(r=1,..., N—1) gives the characteristic differential equation
de & de; dz
OT== [ =0 along—=V" .
dt Zl / dt o84 ’ (2.9)

where [{” are the clements of €)%,

5. It may be noted that the only derivative of u occurring in the system (2.4),
(2.5) is Ou/3z. This suggests that along ¢=const there exists a second
characteristic equation relating derivatives of  to those of ¢;. This equation is
given by the compatibility condition

Q | duc)/dz\ _
det(l -1 —p'(® )—0’

between the N equations (2.3) and the equation

NaCj
—Z—p'(H)=0
]szat p'(®)

0=(Q,
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which follows from differentiation of (2.2). Expansion of the (N + 1)th-order
determinant by its last column then gives

E a(“ ¢:)

— (det @)p’(1) =0, (2.10)

where the cofactors B; arc obtained by replacing each element in the ith row of
det @ by 1 according to

Ou Qn Oy
1 1 ---1
Bf = _det .
Om Qw2 Qwn
Equation (2.10) is equivalent to
a
™ {K(z, thu} = p'(t)M(z, 1), (2.11)
where the integrating factor K and the term M are given by
* N Bi(3¢;/97)
K(z,t)= —_————dZ,
(&, ) = exp 0 LiLi B

M(z, H=K{(z, f)(det Q) i Bic;.

Consequently the variation of flow speed u with z at a general instant is related to
the current distribution of concentrations {¢,} and the instantancous rate of
pressure change p'(¢f) = R8p'(7) by

K(z, Dz, £) = U=(6) + p'(7) f "M, B de 2.12)

Equation (2.12) reveals the simplifications occurring in the two special cases.

(a) Flow (constant-pressure) stages. In these p’(¢) =0, so that p'(z) =0 gives
u(z, )K(z, t) = U () = u(0, ¢), an arbitrary function of ¢.

(b) Column closed at z = 0. Since U™ (t) =0, equation (2.12) expresses i as a
function of the concentration distributions multiplied by p’(¢), which is itself
proportional to the instantaneous rate of pressure increase. A similar simplifica-
tion arises for U*(t)=u(L, t) =0.

Cases (a) and (b) describe most stages in an operating cycle, as illustrated by
the typical example in the next section,

3. The stages in a typical operating cycle

An operating cycle consists of a number of stages. The number of patented
arrangements is large (sce, for example, (Kirkby and Kenney, 1988)), but the
example illustrated by Fig. 1 is representative.

Here, in stage 1, the gas mixture flows at a constant (high) pressure p, from
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Fic 1 The stages in a typical operating cycle

z=10 towards z =17. At time ¢, the inlet valve is closed, gas continues to flow
through z = L and the pressure falls monotonically during stage 2. At ¢t =1¢, the
valve at z = L is closed, and the valve at z =0 is opened, so that during stage 3
waste gas exhausts through z = 0. The pressure continues to fall until a reference
(atmospheric) pressure is reached at ¢ =¢;. During stage 4, a constant-pressure
stage £, <<t<t,;, the column is ‘purged’ by reintroducing at z = L some of the
‘waste’ gas collected from z = L during stage 2. At f=1,, the valve at z =0 is
again closed and the column is repressurized by ‘backfill’ through z = L, partly by
introducing some of the enriched product released during stage 2. At time t= ¢
the pressure returns to its initial value p,. The cycle is then repeated.

It will be scen that ‘fresh’ gas mixture is introduced only during stage 1.
Refined product is collected during stages 1 and (part of) 2, while the unwanted
constituents are exhausted at z = 0 during stages 3 and 4.

Stages 1 and 4 are constant-pressure stages, so that equation (2.12) relates the
local flow speed u(z,t) to the respective inlet speeds u(0,)=U(¢) and
—u(L, TY=—U"(t) by

u(z, )=

U=(r
K(Z, t) ( )1 Stage 1)

_K(L, 1)
T K(z, 1)

(3.1)

u(z, t) U*(r), stage 4.
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Since all the N — 1 finite characteristic speeds are positive multiples of u, the
corresponding characteristic curves have positive slopes during stages 1 and 2, but
negative slopes during stages 3, 4 and 5. The only exception is at closed ends of
the column, where the characteristic speeds are zero (z = 0 during stages 2 and 3,
z = L during stage 3).

Consequently, the initial boundary-value problem appropriate to stage 1 is to
specify the initial concentrations c;(z, 0) = p,yi(z, 0) along 0<z <L, together
with the inlet concentrations c;{0, f) = p,Y; (f) and inlet speed U (¢f) during
0<7<#,. At each instant, equation (3.1) then relates u(z, t) to U (¢) via the
current concentration distributions c¢;(z, f). The evolution of c(z,r) is itself
governed by the system (2.5).

Stage 4 is treated similarly, with ‘initial’ data ¢(z, ;) determined as the final
state of stage 3 and with inflow data e(L, )=Y¥"(f), u=U"(f) specified on
z=1L.

For stage 2, ‘initial’ data ¢(z, ¢,) are determined from stage 1. Since no gas
flows across z =0, the N — 1 characteristics coincide with z =0 during £, <t <t¢,.
The concentrations ¢(0, £} = ¢7(¢) cannot be specified independently since they
evolve according to (2.5) which, on z=0, reduces to the set of ordinary
differential equations

N N
> (0% Z Qm,) Lioo, p=c0 32)
j=1 j=1

In this set of equations ¢ is a redundant variable, so that solutions may be
expressed in the form

¢ ()= Cp(), Y~ (1)} = Gip, Y~ (1)} (3.3)

which relates the various species concentrations at z =0 to the changing density
and to the final values Y; (¢,) of the inlet-volume fractions during stage 1. Also,
as in case (b) of section 2, equation (2.12) simplifies during #, <t <¢, to give

t) (t)

u(z, 1) = j M(E, 1) dE. (3.4)
Equation (3.4) shows that changes in density (or, equivalently, pressure) are the
driving mechanism for flow and for the resulting changes in concentration
distributions. Consequently, during stage 2 it is convenient to replace time by the
evolution parameter T = p; — p(¢) so that « is replaced by the pseudo-velocity

u i
7@ p0) Ko

(As before, K and M are defined using spatial integrals at the current instant and
so may be labelled by 7 equally as well as by #) The evolution of ¢ is then
determined from (2.5) with u replaced by v and ¢ replaced by 7= p, — p, where
v(z, 7) is determined at ¢ach instant from (3.5).

Stage 3 is similar to stage 2, but with reversed flow and with U* =0. Again
using 7= p, — p(f) as the timelike parameter during f, <t <f; reduces equation

i

U

= [me o (39)
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(2.12) to the relationship

_—u 1
p'(t) K(z 1)

between the pseudo-velocity v and the density reduction . Characteristics travel
in the direction of decreasing z except at z = L, where the system (2.5) reduces to
an ordinary differential system with solution analogous to (3.3) in the form

(L, 1) =i (1) = Ci{ps— 7, Y (8}

During the pressurization stage 5, the natural timelike parameter is T=
p(t)— pa+ 14, for T, <T<T5=T4+po— ps- The ‘initial’ data at =1, are
given by the final distribution of ¢ in stage 4. The boundary conditions ar¢ more
complicated. Through each point 7,<7<7s of z =L exactly N—1 finite-speed
characteristics enter the solution region so that it is appropriate to specify
¢(L, ) = p(f)Y; (t) (only N—1 independent quantities, since Y ¢;=p). The
inlet flow speed cannot however be independently specified. It is determined by
the closed end condition U~ =0, which from (2.12) yields

v

L M(Z, 7)de (3.6)

u u 1

T p'(t) Kz )

Even though boundary conditions are imposed at both z =0 and z = L during
stage 5, a numerical procedure suitable for stage 3 does not require much
modification. In each case, a modified form (t— 7, u—v) of the system (2.5} is
used to govern the evolution of ¢(z, ), while the corresponding distribution of
psendo-velocity v is determined as a solution to the ordinary differential equation
(2.11) in the form (3.7) rather than (3.6).

During stages 1 and 2 the finite characteristic speeds are positive, while in
stages 3 to 5 they are negative. The domains of dependence for the system (2.5)
have the forms indicated in Fig. 1, suggesting the use of upwind differences in z.
Also, from physical considerations it is expected that all finite characteristic
speeds satisfy |dz/d¢f<|u|, |dz/d7| <|v].

Tt may be noted also that, just as p is a natural means for defining a timelike
variable in stages 2, 3 and 5, mass inflow is the appropriate choice in the
constant-pressure stages 1 and 4. Thus, in stage 1, the choice

L "M, 1) de. 3.7)

1=J: U~(T)dT

gives
v{0, 1) =1, mass inflow = p,A*T,

while during stage 4, the choice

T= -c3—f U*(T)dT
3

gives .
v(L, 7)=—1, mass inflow = p, A(T — 73).
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4. The binary mixture

The general situation, with three or more constituents in the gas mixture, is too
complicated to allow a predominantly analytic treatment. Effective analysis must
be largely numerical. However, to reveal the phenomena which should be
expected (and which a numerical procedure must be capable of handling) it is
useful to treat the binary mixture analytically.

For N =2, the singular 2 X 2 matrix A of (2.8) has the characteristic equation

M MA+Ap)=0,
so that the unique finite characteristic speed of (2.5) is
dz___u
dt Ap+Axn ’
where

A+ A= Q2 — QZ:) ::'_Ez(Qn — Q1) ‘
1T €2

The corresponding left cigenvector of A is
I" = (A1, Ap) = (—Ay, ~Ayp) = (—Ay, An),
so that the differential equation holding along each characteristic is
%=@: 102 — 200
de; An @n—cQxn
or, equivalently,
do _ o
dQ, ¢’

Integration of (4.1) provides a relationship between ¢; and ¢; + ¢, = p(t) which
depends also on the value ¢ taken by ¢; at points of that characteristic having a
reference density py. Thus the concentrations ¢; and ¢, may be expressed in the
forms

0; = Q:(c). 4.1

c=P{p@®),c}, c=p)—P{p@), c}, (4.2)
where
3P _ de, }*1 _ Ap _
ap_{1+dcl ¢ _All +A22, P(Po, C)_C‘

4.1 Constant Pressure

Equation (4.2) shows that, in each constant-pressure stage, both ¢y and p — ¢,
are constant along each c-characteristic. Equation (4.2) simplifies to

¢y =C(c).
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Moreover, the right-hand side of equation (2.11) vanishes so that uK depends
only on . Also it is allowable to choose the integrating factor K of the form

K =K(c,) = K{C(c)},
where

K'(c1) _ (Q21— Q22) — (G2 — Q11)
K (Q21— Q)1+ (Q12— C1)(p — 1)

The characieristics ¢ = const are then determined from

dz{ _ uo(t) u =u0_(t)
dr |, (Au+Ax)K(e) K(cy)

When an appropriate timelike variable 7(#) is introduced, defined by 7'(f) =
ug(?), it is seen that for a binary mixture the concentration distributions in any
constant-pressure stage evolve as in a simple wave described by

de;  ocy

(An +A22)K(C1)E+§=0- (4.3)

If the characteristics are labelled by the parameter £ such that z=E at t=#¢, (a
reference time when 7 = 1) then the solution may be written ast

a=C@E), =p-CE), u=u@/K{CE),

R 4.4
(Au+ A)K(CEN e —8) = [ ull) di =7~

i

As in simple waves, the dependence of 3z/37=—£,/E, on the disturbance

¢;=C(&) causes the characteristics either to spread out or to converge, so
tending to form an abrupt jump in ¢, {(a ‘shock’). Spreading occurs in portions of
the signal where £, decreases with ¢, while convergence occurs in portions where
£, increases with ¢. Since differentiation of (4.4) gives

£ = 1

i+ (r—w)S'(E)

where S(&) =[(An + An)K{C(E)}]™" is the ‘pscudo-speed” of each &
characteristic, it is seen that ‘spreading’ portions of a disturbance are those in
which $'(E) has the same sign as ug(¢). ‘Steepening’ portions are those in which
S'(€) and ug(t) have opposite signs. A ‘shock’ forms when &, first becomes
infinite, which is at the earliest time ¢ for which

(v= 705 (&) =5'(®)[ woltyat=—1 @5)

For flow towards z = L this can happen only on characteristics for which §
decreases with z, while for flow towards z = 0 it can occur only on characteristics
for which S increases with z. Equation (4.5) generalizes the familiar shock-

1 Substantially this representation was obtained by Professor Eric Varley at an early stage of the
Oxford Study Group with Industry, 1985.
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formation criterion for simple waves and shows that shocks form on characteris-
tics &=£&*, where S'(§)sgnu, has a local maximum. The instant of shock
formation is given by

‘] . _1
1:—1:0=‘[ uﬂ('t')dr=S,(E*).

Subsequent growth of shocks is treated in section 5.

4.2 Varying Pressure

In pressurization stage 5 or in depressurization stages, 2,3 the concentrations
along each & characteristic depend on p = p(f), as well as on the concentration
¢, = c(&) associated with the reference density. Expressions (4.2), together with
the fact that A, B, @, etc. are defined in terms of ¢, and c¢,, suggests that a
change to characteristic coordinates (&, £) be made.

Definition of

z=Z(& 1), Z,=ufA, Z.=l§ 1)

leads to replacement of the derivatives according to
g 12 a 3@ uld

L2 L ]
3z 19%& 3t ot MoE

Here I{&, t), which measures the spacing of the & characteristics, is related to the
characteristic speed through the compatibility condition

8l & fu
2oz ls) “-6)
Transformation of equation (2.11) in this binary case (N =2) leads to
3, .
3% {K(p, c)u} =M(p, c)I(E, t)p'(1), (4.7)

where K(p, c¢) and M(p, c) are defined by

K. 3¢; /< (B, — B))PAp, ©)

v B; B, = ‘ - ’

K ;=21 ac 2‘1 (Bi— By)P + pB,
ﬂ_Zf detQ

== R B, = —Qxn, B= - Q4.
R (B,—B,)P +pB, 1 = 0n— O ,= Qi — Qn

Equations (4.6) and (4.7) form a linear system for u and /. They may be simplified
to the form

al & 3 - %
% = a_g, Eé {AK(p, cyw} = M(p, o), c=c(§) (4.8)

by using p as the timelike variable and writing
u =)Lp’(t)W(§, p)) A=A11+A22=l(ps C)'
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The fact that w (but not ¢) may readily be eliminated from the system (4.8)
illustrates the subsidiary rdle taken by u in the original system (2.3) and (2.4).
However, it is preferable not to perform this elimination but to rearrange {4.8) in
characteristic form as

5. 1(@—(% o
Z‘; i (ﬂz c "(E)w. (4.10)

Equation (4.9) may be regarded as an evolution equation along each &
characteristic; governing the spreading of that characteristic from its neighbours.
Equation (4.10) (like (4.7)) governs the distribution of speed at each instant (or
equivalently for each value of p). It may be noted that the coefficients in (4.9)
and (4.10) involve exactly the combinations R./R and M/K arising in the
definitions of K and M, and so are readily written in terms of p and c(§).

Initial and boundary conditions appropriate for (4.9) and (4.10) are determined
by reference to equivalent problems in the (z, f)-plane for each of the stages 2, 3
and 5 (see Fig. 2).

Stages 2 and 3 are of similar type. Also, since each § characteristic within
0 < z < L in stage 3 has emerged from stage 2 the single function ¢ = d,(§) relates
¢ to & in both stages. The resulting boundary-value problems for (4.9) and (4.10)
are shown in Fig. 3 for stages 2 and 3. Note that, in each case, p decreases with
time.

Initial conditions for stage 2 are found by inverting & = £,(z) as z = z,(§), so

giving ,
I(E, py) =h(§) = z1(8).
From the solution (&, p) to (4.9) and (4.10), z = Z(&, t) = Z(§, p) is found by
integrating . .
ZE =] with Z(Z(], p) =),
This yields the outflow conditions by relating & to p through the solution

&= x(p) of .
Z(g p)=L.

t 4 ta t4

o ST TN
zzg(t) /2/ \ 3 Zigm T \ \5\p=p(r)
[ 17 NN LN

E= & (z) E=5 (2) §=§& (2)
c=d; (&) c=d (&) c=ds(&)

P~
NY
-

NY
Ny

L

FiG. 2. Initial and boundary conditions for stages 2, 3 and 5
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Also it yields the final state of stage 2 (and initial state for stage 3) in the form

z= Z(E) Pz) = ZZ(E)“

Stage 3 is integrated similarly in E,<E=E, using the initial conditions
w(&,, p) =0, Z(&, p)=L, so giving the final state z = Z(&, ps) = z3(&) and the
output conditions & = ya(p) through the relation Z(xs(p), p)=0.

The pressurization stage, stage 5, 18 somewhat different, since some &
characteristics enter the flow region through the open end z =L where the
concentration ¢ = Fy(p) is specified. To determine the relation &= ys(p) which
holds along Z = L (see Fig. 3) the equation

ZE(E’ p)=l! ZA(&SJ P)=0
is integrated to give

xs(2) N

[ e ) g = 20602, )= 1.

S5

Since there is no loss of generality in faking =1 along Z =L, differentiation
gives

%s5(p)

xs(p)
0= Las(o), pKE)+ [l dE= o)+ [ e

Consequently the ‘free boundary problem’ defining the path &= %s(p) in the
(&, p)-plane is

dys/dp = —w(¥s, p) (4.11)
together with the subsidiary conditions
Wxsp), py=1  c=Kp). (4.12)

5. Abrupt jumps

The characteristics of the nonlinear system (2.4), (2.5) may coalesce and then
ovetlap in the (z, t)-plane, so causing the solution to become multivalued. To
prevent this, a discontinuity in # and ¢, analogous to a gas-dynamic shock, must
be introduced. This jump models a region of abrupt change in u and ¢, where the
equilibrium assumption and the neglect of inertia effects are not valid.

Equation (2.3) expresses conservation of the various species S;. Consequently,
across a discontinuity curve J, the jump conditions are

VIQ] =luc:, i=1,2,...,N, 5.1)
211 [e]=0,

where dz/df =V is the speed of J and where [f]=f" —f~ denotes the jump in
any quantity f across J. In a solution method for (2.4) and (2.5) it must be
anticipated that jamps (5.1) may occur, with propagation speed which, in the
weak discontinuity limit, reduces to any of the characteristic speeds V" of (2.9).
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For a binary mixture with ¢, = p(t) — ¢;, equations (5.1) reduce to
- [uc,] =p [z]
14 "lQ:+Q.F
Note that p, ¢i and ¢; determine the ratio u™/u~ of flowspeeds above and below
the jump J as 7
u” plQi]—erlQ: + @

B plQ:] — 710, + 04 5:3)

|4

(5.2)

&

independently of &.

5.1 Uniform-Pressure Stages

When pressure remains constant equation (2.11) shows that, in regions where
¢, is continuous, Ku depends only on time. However Ku may be discontinuous
across J. The expressions (4.4) describing the disturbance in a binary mixture
should be amended as

ug (1)

=ty G=C®  2-E=S®[ B0 E-5OCO-w. 64

This shows that two distinct relations between 7 and ¢ are required in the regions
E>E*(f) and E<E(f) above and below the jump. From (5.3) the functions
ug (1), ug (¥) defining =*(¢) and 77(f) are found to be related by

ui _ K(ch) plQ:] - 510 + 0

uy  K(er) plQd — ei1Q1 + Qo1

In stage 1, ¢;(§) and u;(?) are determined by initial conditions at ¢ =z, and
inflow conditions at z =0, while in stage 4, ¢;,(§) and ug(¢) are determined by

conditions at t ={; and inflow conditions at z = L.
Since dz/dt =V along both § = §7(¢) and & = £*(z), it is found that

=J(ct, e7, p). (5.5)

%: {Z- s} /fi+s@® JO u ) ail, (5.6)

Uo
95;: {é— S(§+)} / {1 +5(5) J; G di}.

Together with equations (5.2) and (5.5), these provide a coupled pair of ordinary
differential equations for £¥(r) and £7(¢). Each solution defines related functions
J, ©* of time, so allowing complete determination of the disturbance during a
constant-pressure stage.

5.2 Varying Pressure

During the flow stages 2, 3 and 5 the formulation in section 4.2 using p and £ as
independent variables is appropriate. In this case, jump discontinuities must be
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inserted to prevent [ = Z; becoming negative anywhere in the relevant solution
region.
Since, throughout the solution, equations (4.2) hold, it follows that

a=P(p,c), c=p—P(pc), c=c(@),
so that O; = Q;(p, c). When the substitutions
‘ u= lp'(t)W(E, P), A= A'(p: c)
are used, the conditions (5.2) across a jump J having

dz |4 + — et +
a;_p_'(—tj—w’ E=E¥p), c=c*=c{E*(p)}
become _ :
W= p--M [AwPTIQ, + Q-1 = plAw[Q4]. - (5.7)
[0:+ Q. . N

Along the two paths & = £*(p) (see Fig. 4(b)) which define the characteristics
meeting the jump J at p, use of the definitions Z, =w, Z. =1 leads to

d&* d&~ ' -

W=w'+It——=w" +I" —. .

w ap w P (5.58)

Equations (5.7) and (5.8) are the conditions along the ‘free boundaries’

£ = E*(p) which in general will occur within the solutions of (4.9) and (4.10). If

E* and & have been evaluated at some value p, then (5.7), rearranged

analogously to (5.3) as

w

wh_ (A_‘) pl0] - P10 + Q)
2%/ pl0. - PTIQ, + 2il
E=E"(p) E=E*{p)

p T pe - +
J w w
P —fL>——>

z=L
z=0
z w =0 z

(@) {b)

FiG. 4. Propagation of a jump J, as in stage 5. (a) Characteristics £, £~ in the (z, p)-plane; (b) paths
E=&"(p), £=& (p) in the (§, p)-plane
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allows the boundary condition w=0 at a closed end to be used with equation
(4.10), so giving w(§, p) at all relevant values of £. Equation (5.7), then
determines W, so that (5.8) gives the pair of ordinary differential equations

d&*/dp ={W — w™(§, p)}/I*(§, p)- (5.9)

These, together with equation (4.9), allow integration with respect to the timelike
variable p.

6. Numerical aspects of the problem

6.1 Numerical Solution of the Equations for Pressure-Swing Adsorption

We have seen above how the equations for pressure-swing adsorption may be
characterized as a hyperbolic system, and noted some special cases in which
analytic solutions are available. In general however even for the 2-species case
with no energy equation a numerical approach is required. For simplicity we
concentrate on the 2-species case, though the method described below is
applicable to any number of constituents. We include analysis of all five of the
stages discussed in previous sections, and note that at each stage the numerical
method must be modified 1o reflect the different characters of different parts of
the process. Finally in section 6.2 some humerical results are given, both for a
simpie test problem in which the entire solution may be calculated, and a case
where the Langmuir isotherms are used.

We assume that N + 1 equispaced mesh points z, 2y, . .., zy are introduced
along the column, with a corresponding time step df, and that the stages take
place over time intervals the commencements of which are labelled 0, ¢, t,, ¢
and ¢, respectively. The whole cycle is assumed to be complete when ¢t =¢;. At
the start of stage 1, the quantities ¢(z, 0), ¢(0, t) and u(0, f) are known, the
density is constant, and the flow is from z=0 to z =L along the column. To
advance one time step we first solve the equation (see (2.5))

[Qu - "'(Qu + QZI)] % [le - —(le + sz)] *+u(z, t) — =0 (6.1)
using a distribution u(z, ) corresponding to the start of the time step. This will
give a ‘predicted’ value of ¢(z, ¢) at the next time step. It should be noted that we
only solve a single equation for ¢ as we know values for the sum c; + ¢;. In the
N-species case of course, we would solve N — 1 of the equations

N

ac; uap,,_ o
le( ¥ p(,) E me) 5 =0 (=12....N) (6.2)

We now update u by solvmg (see (2.10))

31 — (ucl) + BZ (ucz) 0 (6.3)
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FIG. 5. Orientation of computational grid for stages 1, 2 and 3, 4 respectively

using the predicted values of ¢, to give the prediction of u(z, ¢) at the end of the
time step. This updated distribution for # may then be used to traverse the
predictor—corrector cycle again if desired, but in practice this has not been found
to be necessary unless very great accuracy is desired. Equation (6.3) is, of course
in an especially simple form in stage 1 because the density is constant. To be
more specific, writing (6.2) as

aoc 1 862 ac;

2t ay—+u—=0 )

“or T e 64)

we take into account the fact that the flow is from left to right along the column
and use a simple ‘box’ scheme discretization (see Fig. 5(a)) to write (6.4) as

al(CID - CIA + CIC - CIB) + 0.’2(02]) - CZA + C7C - CZB)
+ luB(C1C - CID + clB - C}_A) = 0, (6.5)

where
A= 68t/6z.

Equation (6.5) may easily be rearranged to give an explicit formula for c,, and
discretizing (6.3) as

By((uci)e — (ueq)p + (uc)s — (ue)a)
+ By((ucs)c — (ucy)p + (ucr)s — (ucz)a) =0 (6.6)

allows the derivation of an explicit formula for u. in terms of the ‘predicted’
values of ¢. It may easily be shown that this method has O(h*) accuracy, and
unconstrained stability. One of the reasons for this is that the CFL condition is
always satisfied as a result of the analytical information known about the
characteristics.

Equations (6.5) and (6.6) describe the general nature of the entire numerical
method, but there are a number of alterations which must be made depending on
which stage is under consideration. For stages in which the pressure, and
therefore the density is not constant, so that the full version of equation (2.10)
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applies, (6.6) must be altered to read

Bi((ucy)c — (uer)n + (uer)s — (4ci)a) ‘
+ By((ue)e — (Uea)p +(ucz)g — (Ucz)a) = 2dzp'(t)det @, (6.7)

where we assume that since the pressure is ‘known’, the density time derivative
may be regarded as prescribed In stages 3, 4 and 5, where flow is from right to
left along the column, we naturally change the direction of differencing of
equations {6.2) and (6 3). The net result of this is that Fig. 5(a) is changed to Fig.
5(b), and the formulae for ¢, and uc become

_ T + ayfci, + 1, — O] + @fCo, F Cop e )+ Augler, — €1, —€1p)
(Cﬁ — &y — lluB)

_ Bl((ucll)D.'i' (uc1)a — (ucy)w) + By((uca)p + (uea)a — (uCZ)B) —2dzp'(t) det Q
He” (Bi — By)ci.+ Bopc '

ic b

(6.8)

We must also consider how to deal with the stages in which, because of the
infinite ¢haracteristic speed inherent in the problem, the boundary conditions
arise naturaily as the solutions of ordinary differential equations. Once again, in
general we need only solve N — 1 of these equations in the N-species case, and in
the 2-species case a rearrangement of (3.2) gives

de, _ p' (O 'er(Qrz+ Q) — Ciol
dt (Qu—Qw)+ p Qi+ Q= Qs — Q)

which may be solved by any standard method. The resulis presented below
employed a simple 4th-order Runge—Kutta method to solve (6.9), which has
proved accurate and easy to implement.

It remains to consider stage 5, where we have seen that the specification of the
boundary conditions is slightly more complicated than in stages 1 to 4. Since in
general we have u given at the left-hand end of the column and c at the
right-hand end, we simply modify our differencing formulae as follows. To find
the ‘predicted’ value of ¢ the method used for right-to-left flow stages is used. An
update of ¥ may then be computed using a ieft-to-right difference as described for
stage 1 but with a variable density, and the solution may be completed. _

Before examining the numerical results produced by the scheme described
above, some additional comments are relevant. We note first that the mathemati-
cal analysis of sections 1 to 5 has been indispensible in setting up the numerical
method.. The only reason why a simple box scheme is effective in this problem is
that a complete knowledge of the characteristics has allowed us to identify the
direction of wave propagation in each stage. For more pgeneral hyperbolic
problems the one-sided difference methods used would capture only half the
waves which may exist. It is also worth mentioning that it is possible to formulate
another numerical scheme which makes even greater use of the analytical results.
This relies on noting the fact that once a *predicted” form of ¢ has been calculated
as described above, u may be calculated from equation (2.12) using the relevant

(6.9)
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definitions of K(z, t) and M(z, ) and the iteration loop continued without the
need to use a finite-difference method for w. Although in principle it would be
desirable to employ this exact solution for u, its extreme complexity and the
appearance of the derivatives in M(z, {) which would have to be estimated
numerically make this scheme impractical. The exponentials involved would
undoubtedly be a source of magnification of small errors, and it is unlikely that
valuable results could be gained from this use of the exact solution. It is also
worth pointing out that the box scheme described above, which has been chosen
mainly for its simplicity, may be replaced by any altemat:we method without
altering the basic structure of the method. Although for the simple cases
described below the box method is perfectly satisfactory, if computation of cases
where shock solutions existed was to be undertaken it is likely that a more
sophisticated method would have to be used. The general form of the numerical
scheme and its intimate dependence on the analysis would still remain, however.

6.2 Numerical Results

In order to test the proposed numerical method, two test cases were
considered. For the first, a solution to all five stages of the problem was
constructed. This case was of necessity simple and did not correspond to a
realistic specification of the isotherms. It did however provide a worthwhile test
of the efficiency and accuracy of the numerical method. We took Q,=Q,=1,
reducing the equations (2.3} to a set of standard conservation—convection type.
Initial and boundary conditions were also chosen for simplicity. Specifically, we
assumed that the five stages of the process took place in a column which extended
from z =0 to z =1, and over the time intervals

[0,8), [tista), {tast3), [f35td), [tasts)

so.that stage [ started at ¢;_, and finished at #,.
In stage 1, the conditions taken are

u(©0, =26t - 1), iz, =3p(1-2),
(0, ) =3p(1+1,7—3%),  p=pe=const,
so that the initial concentration is a simple linear profile, with associated exact
solution a=3p(l—z+42-3%7), u=2(t—t).
In stage 2 the left-hand end is closed, so that # =0 when z = 0. We also take
p() = (t, — ) °[(p1 — Po)(2F = 382(ty + 1) + 61t41,)
+ puti(ts — 36) + pot3(36 — )],

so that p’(#,) = p'(12) =0, p(ts) = Po, p(12) = p1-

On ¢ =1,, c, is given by the final concentration profile of ¢, from stage 1, and

on the boundary z = 0 the relevant ordinary differential equations must be solved
The exact solution for this stage is

=1p(O[1+38 —p(2/po),  u=—p'(O)z/p(t).
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In stage 3, the density is again decreased so that

p(e) = (&2 = 15)[(p2 — P2 = 3E(8 + 1) + 61505)
+ pat5(t, — 3t3) + p1 3038 — 13)]
and p'(6) = p'(t3) =0, p(t;) = p,, p(ts) = p,. Again the solution on r=1¢, is that

arising from stage 2, but this time ordinary differential equations are solved on
the line z = 1. The exact solution now is

)

¢; =3p(M)(A+36—pi/po) + 2Pp = (L“:_E)_ﬁ’.'(_’)
0

p(0)

In stage 4 the density is constant and equal to p,. We prescribe the velocity at
z=1as

(1-2),

u(l, ) = 5(t— 0)ta— 1)
and ¢(1, ) = 3(K, + K,(U(r) — U(ts))), where

K, = p,(1+ 313 — p1/po)s K, = p3/po,
U(t) = ttsts + 368 — 366 + 1)),
and take c(z, t;) to be the concentration profile arising from stage 3. Here the
exact solution is
€= %(Kl_'l' K(1-z+U@®-U®W), u=it—)t—1).

Finally, in stage 5, the left-hand end of the column is closed so that u(0, £) =0.
The solution at ¢ =1, is the concentration profile resulting from stage 4, and the
density is taken as

( = )(p2— po)
(ts — ta)?

so that the repressurization is complete at t=¢;, when p=p, once again,

Choosing to specify

p(t)=po+ [t + 25— 2t4]

et = —15,( 20 (‘)) ;”(‘) K, + Ka(1 + U(t) - U))]

gives the analytic solution as
P\ | 1p() _P()z
fokB0) 13291k, + 1+ UG - U, =T,
Figures 6 and 7 show respectwely the predictions for concentration and velocity
profiles along the column at typical times during each stage. The functional form
of the density profile is also shown. Agreement is clearly very good, showing that
the suggested method with the equations recast in their new form is both efficient
and accurate.
Having shown via a simple test case that the proposed numerical method
successfully combines a simple finite-difference method and theoretical analysis of
the problem, we now turn to a more realistic and general case. We choose the

c:
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FiG. 6. Numerical (symbol) and exact (line) solutions for representative pressure-swing cycle

constants K; to correspond to Langmuir isotherms (as in (Richter ef al., 1982)) so

that ﬁ
. Hi . By
= 1+ :I(s,'_ ,'Ci[ ].
Q; [ 1+ pey + pocad ™ K (L+ pay€1+ poca)’

Here B, u, and u, are constants and we assume that temperature changes are
negligible. (As remarked earlier, the addition of an energy equation to all the
foregoing analysis is straightforward, but for simplicity we do not consider such
matters here.)
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Fic. 7 Numerical (symbol) and exact (Hne) solutions for representative pressure-swing cycle

As remarked earlier for the constant-pressure stage 1 it is still possible to
compute an analytic solution to the problem, though in later stages when the
pressure varies we can no longer do this. Specifically, the stage-1 solution is

- u{0, OW(w)
W(wo(1))
={c1(—b(cl)['r—z/b(cl)]) (T <z/by),
Y Leo(r — 2/b(ey)) (v>2z/by),
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where
2 _4fw—
exp (Kyta“ 1( A Y)) Qy(1+ mp)(1+ p2p) > ¥7),
W(w)= w—y— D\*P o
(m) 2y + pmp)(1 + pap) < ¥9),
w=1+!,l.2p+BC1, B=p,— U, Y=ﬁ/2F’J
A?  (if positive)
29(1+ pip)(1 + pp) — ¥° = { ’
Y(1+wp)(1+ pop) — —D? (if negative),
w2
wppea
b(Cl) = wz
T A
respectively,
* u(0, 5)
T = 5 m dS, b() = b(CI(O’ 0))

The solution changes its form in the usual way depending on whether 7 is greater
or less than z/b, (that is, whether (z, ) is to the left or the right of the last
characteristic emanating from (0, 0)) as shown in Fig. 8.

Figures 9 and 10 show respectively the concentration and velocity profiles for
the case where B8 =3.2, u,=0.4, u,=1.5. The boundary conditions were the
same as in the previous test case for stages 1 to 3, but had to be altered slightly in
stages 4 and 5 to ensure the continuity of ¢;. The comparison with the exact
solution in stage 1 is clearly excellent and the effect of including the Langmuir
isotherms can clearly be seen.

Computations were also carried out for 3- and 4-species cases with only minor
changes being required in the computer coding.

T4

€y =cqf7)
W"_—W[)(t) T > z/ba

u =u{0,t) Z =Dyt

T < 2/by

NY

&=C1(2)

Fi. 8. Line where the solution to the stage-1 problem changes type in (z, 7)-space
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FiG. 9. Numerical {symbol) and exact (line) solutions for representative pressure-swing cycle in the
case of Langmuir isotherms

7. Conclusions

A mathematical and numerical analysis of the industrial process of pressure-
swing adsorption has been presented. The governing partial differential equations
have been shown to be hyperbolic, but with an infinite characteristic speed. In
order to allow a numerical solution of the equations to be carried out efficiently,
they have been recast. The characteristics have been used to explain the more
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FiG 10. Numerical (symbot) and exact (line) solutions for representative pressure-swing cycle in the
case of Langmuir isotherms

important details of the flow, and in some simplified cases it has been possible to
construct analytic solutions to the governing equations. The mathematics of the
problem has had a significant influence on the numerical scheme chosen, which
has been shown to be accurate and efficient, and is easily applicable to the
problem with more than two species. It could also be modified to take into
account stages of the process which have not been considered here.
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