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Summary. Previous studies of slot film cooling have mainly concentrated on a flow geometry so arranged
that the slot is flush in the containing wall. Tt fs known that when the total pressure head of the injected flow is
less than the free stream head, separation from the front of the slot is tangential to the wall (the so-called hid’
effect). This phenomenon limits the mass flow from the slot which in turn limits the effectiveness of the
cooling. An appealing strategy to enhance the mass fiow is to force a non-zero angle of separation from the
upstream end of the slot by geometrical means The present study considers the influence of the geometry on
mass flow and suggests possible improvements for the mean fiow characteristics. Asymptotic analysis based
on inviscid fiow theory is used to derive a nonlinear singular integrodifferential equation (NLSIDE) for the
height of the separating streamline. This equation is then solved numerically and the mass flow
characteristics determined for various geometries.

1 Infroduction

In oxder to increase either the life or operating temperature (and thus efficiency) of a turbine
blade, a film of cooling air may be injected into the flow through smalt slots or holes in the surface
of a turbine blade The cooling effect is increased as the mass flow of injected air increases.
Practical details of the general problem were considered in [1]

An obvious strategy for increasing the mass flow from the slot is to increase the size of an
individual slot, or simply to provide more slots; evidently both of these strategies have
a deleterious effect on the structural integrity of the turbine blade An altermative proposal
without this disadvantage is to increase the mass flow by a suitable choice of local geometry near

the upstream edge of the injection slot. In the present study we consider geometries of the form
shown schematically in Fig. 1.
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Fig. 1. Schematic of turbine blade slot geomeiry
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The work contained in this paper is a generalization of that of Fitt et al. [2], and the reader is
referred to that paper for details of other work in this area. For a review of earlier work in the
subject, see [3]. The analogous problem for the case of suction (when the injection and free stream

‘total pressure heads are equai) has been studied by Dewynne et al [4] using hodograph methods.

When the pressure heads are unequal however such methods are no longer applicable.

To render the problem tractable and amenable to asymptotic techniques we consider only the
two-dimensional problem of injection from a slot into a free stream. The resuits are expected to
be in qualitative agreement with three-dimensional injection through a hole.

Referring to Fig 1, we observe a ‘separation ramp’ ahead of the injection slot. This has height
H and slope H/D We also include a drop of height 4 from the boundary upstream to that
downstream. The streamline which separates the injected flow departs from this ramp. We shall
investigate how the mass flow from the slot is changed by variationsin H, D and d for a fixed value
of the pressure drop between the far field and the slot.

In Section 2 we introduce the model of [2], suitably modified for the new geometry; some
limiting cases of interest are also considered. In Section 3 the numerical solution of the governing
NLSIDE is discussed, whilst results and conclusions are presented in Section 4.

2 Mathematical modelling

We now consider a mathematical model for the flow Except for the new geometry, results and
conclusions, what follows paraliels the analysis of [2]. The geometry is shown in Fig. 1, the
important parameters being the height H and length D of the separation ramp, the slot width
L.and the drop height d. The model will be based upon classical inviscid thin aerofoil theory, and
it is therefore assumed that the height of the separating streamline and H and d are small
compared with L and D This will constrain us to examine the case when the difference between
the total injection pressure and totai free stream pressure is, in some sense, small. We define the
small parameter ¢ by

1
Pi = Po t oULe?,

where pyis the total pressure head of the injected fluid, p,, is the free stream static pressure, ¢ the
density of the fluid and U, the speed of the free stream at infinity.
In the outer flow we define a potential such that the velocity is given by

Upi+ Vo

We now nondimensionalize and scale by writing
x=L%, ¢=8LU,¢

and denote the height of the separating streamline by
7 = &2§(x)

We now proceed to detive a model for the unknown S(x).
We begin by considering the free stream. Since § = §28(x) is & sireamline we must have, to
leading order, that

-5, {1
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the dash denoting differentiation with respect to X Linearising the Bernoulli eguation the
dimensional pressure in the outer flow is thus given by
P=po— 0ULE G (2)

so that pressure variations throughout the flow are O(oU%e®) Since ¢ satisfies Laplace’s

equation, its x and y derivatives of first order are related via the IHilbert transform. We may
therefore write

P=D"Pwn+

UZe? (¢
eVt ]ES—”:dz, 3
T X

-0

where we have made use of the boundary condition ().

Within the injected layer, downstream of the slot trailing edge, it is evident that the horizontal
velocity must be of order ¢ in order to produce pressure variations of the correct order of
magnitude, that is 0(c%). We thus let

u=sUx,H.

From conservation of mass v, the vertical component of the dimensional velocity in the injected
layer, is O{¢3U ), and hence

as =M, @)
where M is the dimensionless mass flow from the slot. Using Bernoulli’s equation in the layer, we
find that

1 i}
p= ) QSzUzouz =+ Puis (5)

and so using Bqgs. (4), (5) and the definition of py, we find that

1 M?
p=—3 06°U%, (57 - 1) + P (6)

We also observe that, under these assumptions, the mass flow from the slot has order of
magnitnde ge’LU,, thus the dynamic component of the total pressure within the slot is
0(e%U%) and hence is very much smaller than the total injection pressure, Therefore the
dimensional pressure in the slot is p, to lowest order

Completing the matching of the pressure across the dividing streamiine, we finally arrive at
the NLSIDE

1
L F s -3 0<x<1)
Tz J:téxdt: 1 1M @
— e fa ‘Z——S? (1<x<oo)

In the equation above, the overbars have been drbpped for convenience. The relevant boundary
conditions are derived by considering the height and slope of the separating streamline at the
upstream end of the slot and at x = co These conditions are

SO =H+d, SO=HD, Sw=M, §)=0

Here H and d have been scaled with ¢%I. and D with L. Finally, we use our knowledge of the
upstream geometry to write the governing equation (first derived in the special case




82

H=D=d=0in[2]) as

o0

H oo x+ D l 5
zD x T F—X

0+
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1
3 0<x<l
“ }-+il—u—i (1<x<w) ©
172§ *

Evidently the nonlinéar si:ﬁgular nature of this equation renders it extremety unlikely that it
will be possible to find closed form solutions. It may be confirmed however that Eq. (8) has the

asymptotic solutions

S(x)~H+d+§D—Ji+o(x) {x — 0Oy,

s@~M—E@:@+Mw

MEZEED (x> 0).

— M) logx
X bt xZ

The aim in Section 3 of the paper will be to solve Eq (8) numerically in order to determine the
dependence of M upon the parameters H, D and 4. Before mentioning two special cases of (8),itis
convenjent to invert this equation using standard singular integral equation theory (see, for

example {5]). This gives

@

S'(x) = M dt

m ] 9o Vie-n P

1

23]

log (zf__'z)
_Iﬂ[f Nt/ dt, 9)
Vel —x)

Equation (9) allows the asymptotic behaviour near to the rear edge of the siot to be easily
determined. Tt is found that S(x) ~ —log(1=x)asx—1-—,s0 that at this position there is
a logarithmic singularity in the slope of S(x}

The coefficient of the eigenfunction which arises in the inversion has been chosen to ensure

that the gradient condition at
performed on (9} and leads to

o

M2
Sm=7j

T
1

x=0 (S =H /D) is satisfied. Another integration may be

ol ozl

B Flog(ff:D)tfz\/%nog(%ﬂmmd, (10)

0

where the second boundary condition at x — () has been satisfied.

21 The ‘infinitesimal trip’

Ap interesting limit, which we refer to as the ‘infinitesimal tﬁp’ problem, exists as we let D=0
with H = ]/5 H Thus the step height and extent both decrease to zero with the gradient of the
ramp becowming infinite. Hence the slope of the separating streamline when it leaves the walt also
hecomes mfinite. From Eq. {9) we can see that naively expanding the iogarithm in the second
integral term for smail D yields an integral that does not exist. Some care is therefore required.
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However, upon setting ¢t = uD we find that the second term becomes

al

lo 1+l
H]/;c g i i
_ . y
? V;(Duéx)
0

Clearly if = O(1) as D — 0 then (9) becomes

o [e4]

1
- log (1 + —)
Y xM? dt LA w) . 1)
| S Y% Yx Vu

1 ¢

The second integral in (11) has the value 2, and relevant boundary conditions are S(0) = d and
S(20) = M (the other conditions having been satisfied). It should be noted that the final term in
(11) is an eigenfunction of the original integral equation (8)

In practice, the limiting case would prove difficult to realize experimentally. This is
predominantly because of boundary layer effects which have been ignored. Accordingly this
limiting case will not be discussed further

2.2 The ‘finite trip/baffle’

Another limiting case of Eq. (8) occurs when D — 0 with H fixed. We refer to this as the finite txip’
or ‘baffle’ problem. From (8), we see that in this limit

w 1
H L[580, )2 et (12)
X t—x 11 M2

ot *54—5—5—2 (1 < x < o0),

with S(0) = H + dand §(c0) = M Observe that the range of the integral term in Bq. (12) extends
from 0-+. In this case there is no physically viable solution. To sse this, consider the simpler
{linear) integral equation (valid for x > a)

o

J[ St dt _ E 13)

t— X X

a

For a > 0 the solution may be determined by employing the standard theory for such singular
integral equations. This gives

S(x)= —2tan™! fx;a+cl+cz r/x—a,

where C; and C, are arbitrary constants, and the condition S{g) = 0 may be enforced by taking
C, to be zero. However, as @ — 0+ in the solution above, the condition S(a) = 0 1s 1o longer
satisfied and Bq (13) has no continuous solution. This may be contrasted with the case a — 0—,
when the solution is $'(x) = &(x), so that S is a Heaviside step function,
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3 Numerical solution of the governing equation

In order to solve Eq. (8) numerically, we follow a procedure similar to that of [2], which is
designed to take advantage of the form of the NLSIDE and avoid the difficulties associated with
numerical differentiation and the numerical evaluation of Hilbert transforms. Using the
integrated version (10) of the governing equation allows numerical calculations to be carried out
more easily since the integrals are no longer singular

To discretize (10), we first assume that S(x) is piecewise constant on the intervals [, fx+-1)
(k=1, ,N —1)and, taking t; = 1, write

I+ 1

S(x;) = —A;—TI kg‘l STt J (~2 \/% + log (I—%» dt

e

+ Ey_1(x) + P(x, D, H,d) (i=1,. ,N), (14)

where
o0 | S'Z“)(”\/%”"g (h%%)) ‘
and

P, D, H, ) = ~DI; .OflOg (“;D) (42\/§+lcg(]lléi\1f£l)> dt + H + d.

Evaluating the integrals analytically wherever possible and estimating the error term Ey—y for
large enough ty, we derive the iterative scheme

N-1 _ MZ tN
Sje1lxd = 2 870 Au + o X85 *{tx) @ ot P(x;, D, H,d)
k=1 i

G=1 LN, j=12.), {13)

where

M? /sy 1/;

Aik =—102 X iy — Th+1 -+ (tk+l — xi) log —_—— %
. ( (\/_ V ) (h o ﬁ])
) log (M))

i o a+1
Q(oc):tx—\—-i(l)cx)log(oc—;—l)

The integral arising in the definition for P cannot be calcutated in closed form, but may be
evaluated numerically For the computations described below, the highly accurate and efficient
NAG routine DO1ATF was used

This scheme may be used to determine the solutionforl = x = oo, whereupon the solution in
the region [0, 1) may be calculated from Eq. (14). The essential nonlinearity of the equation makes
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it extremely unlikely that convergence of the numerical method can be proved, and we do not
address this question here In practice it is found that in order o ensure convergence from any

(pOsiti_ve) initial guess for To(x), some relaxation must be employed. Accordingly we supplement
the scheme (15} with

T20e) = T50) + 0T pea(x) = Tx9).

where f, the relaxation parameter, is less than unity. It should also be noted that, for given
D, H and 4, the mass flow M is unknown at the outset. It may be determined however by using
the condition that S(co) = M For a fixed geometry, an initial value of M is guessed, and the
problem is solved. Depending on the vatue of ${co), the estimate for M is altered until finally the
prescribed M coincides with S(co). A practical difficulty concerns the accurate estimation of

a value for S(oo) when a necessarily finite-length mesh is employed. From the asymptotic
estimates we know that

S0e) ~ S(c0) — % 10 (lofzx),

where K is a strictly positive constant, so that the approach to the limiting value M is not
particularly rapid and it may be expected that the mesh will have to extend a comparitively large
distance if accurate results are to be produced. Bearing in mind however the fact noted earlier
that the slope of S(x) has alogarithmic singularity at x = 1, itis clear that a fairly fine mesh will be
required near the rear of the slot. The most practical answer to these twin requirements is to vse
a non-uniform mesh. The situation is comparable with the calculation of turbulent boundary
layers (see, for example [6]), and for the calculations reported below a mesh defined by

1 — k
xk+1=1+de(l ‘g/) (k:O,,Nwl)

was used. Here dxg is the initial mesh spacing and g the mesh scale factor.

Some discussion of the iterative process required to determine M for a given geomsetry is
relevant. For the case whén H = 0,50 that there is merely a step down from the front to the rear of
the slot, the analysis is similar to that in [2}, and M may be removed from the problem by a simple
rescaling of 5(x), thus obviating any iterative determination of M. In principle M may also be
gliminated from Eq. (10); multiplication of Eq. (8} by §'(x) and integration between 0 and
o0 cancels out the middle term of the equations and leads to

H ( , x+D M2
4 J 570 Tog (T) dx= M+ (“6)

which in principle allows M to be determined in terms of S(x) and D only The appearance of the
derivative in Eq. (16) renders the integral difficult to compute however Even this problem may be
avoided; if Eq. (9)is used in Eq (16) an expression analogous to Eq (10) but not involving M or
derivatives of S(x) may be derived. Some experiments have shown, however, that the complexity

of the expression for numerical purposes renders the iterative method for determiining M more
efficient.
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4 Results and conclusions

In Figs 2,3,and 4 numerical results are displayed with M plotted against D, H and d respectively.
Figure 2 shows the mass fiow M vs. the step extent D for H = 01and d =0 Cleastlyas D — 0
the problem is identical to the case with H =0 and d = 1/10, so that M is bounded below
In Fig 3 M isshown as o function of H for D = Land d = 0. For values of H in the range 0 to
1/2 this relationship is approximately linear Similarly, Fig, 4 shows the dependence of M on
d (here H=001land D = 1.0) for values of 4 lying between 0 and 3/2. g
Finally, in Fig 5 representative separation streamlines are shown for the paramcters
D=d=1/2and H = 0,01and 02in which case the respective dimensionless mass flows are
M = 170,216 and 2.67. The logarithmic singularity in §'(x) at x = 1 may be clearly observed.
In conclusion, the current study has extended the theory of [2] Lo cover new, more general
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Mass flow M
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Fig. 5. Shape of dividing streamline S{x) for various values of  when D =d = 0.5

geometries that are likely to be of more significant practical use in the field of thermal protection
of turbine blades.

Olble practical problem encountered in turbine blade cooling is to maintain the structural
integrity of the blade whilst injecting a sufficient quantity of cool gas to provide the necessary
amount of protection; slots that are either too large or too numerous may lead to an
unacceptable weakening of the blade. With the previous model described in [2] the only way to
increase mass flow was to increase the siot width. In this model, extra freedom is available — the
parameters H, D and 4 — to ensure an increase in the mass flow without resorting to increased
stot size. The question of how to fix H, D, 4 and the slot width L uniquely and optimally will
depend upon the mechanical and other properties of the blade.

The current study also suggests the possibility of extending the analysis to three-dimensional
flow: the case of injection through a hole.
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