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On the unsteady motion of two-dimensional sails
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An equation is derived to describe the motion of a two-dimensional inextensible sail at a
small, time-dependent, angle of incidence to a uniform two-dimensional flow. The equation
derived is a singular partial integro-differential equation, which in the steady case reduces
to the sail equation of Voelz. A number of limiting versions of the equation are derived
and analysed for cases where the relative mass of the sail is large or small. For general
unsteady sail motions the governing equation must be solved numerically. A scheme is
proposed that employs Chebyshev polynomials to approximate the position of the sail;
ordinary differential equations are derived to determine the relevant Chebyshev coefficients
and a number of examples are illustrated and discussed. It is found that in some cases
where the angle of attack changes sign the tension may become large; in these instances
the underlying physical assumptions of the model may be violated.

1. Introduction

The study of flow past a flexible membrane has been of interest for many years, with
the obvious application to flow past a sail. To date most studies of flow past a sail have
been two-dimensional. One of the first mathematical models was proposed by Cisotti
(1932). In this study the sail was assumed to be non-porous, with the flow separating at
the trailing edge of the sail (the ‘leach’), to form a quiescent wake. This differed from the
work of Voelz (1950), in whose model the sail was considered as a distribution of vortices,
the flow being considered to be incompressible and irrotational, and the sail assumed to
be non-porous and inextensible. It is this model upon which the analysis in this study
will largely be based. Voelz’s model applied thin aerofoil theory (see, for example, Van
Dyke (1964)), assuming that the sail deviates from a straight line connecting the masts by
only a small amount, thus permitting linear asymptotic analysis to be used, subject to the
assumption that the angle of attack of the cross-flow remains small. By this means a linear
integro-differential equation (depending on the ratio of the angle of attack to the excess
length of the sail) was derived for the shape of the sail. This equation was then solved
numerically for a variety of sail lengths, and the lift, moment, and pressure distribution on
the sail were also calculated. Bugler (1957) undertook a more thorough analysis based on
a similar model. However it is the work of Thwaites (1961) that is most usually associated
with this problem. Thwaites’s work was similar to that of Voelz, but although Thwaites
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(independently) derived the same equation of motion, his work extended the theory to apply
to a porous sail where the flow through the sail was proportional to the pressure difference
across it. Moreover Thwaites found solutions beyond the range examined by Voelz, in
particular finding a range of solutions with zero lift for a non-zero angle of attack. Nielsen
(1963) independently completed a study similar to that of Thwaites based on Fourier series
and numerical matrix techniques rather than integral equations, and found that his results
were in good agreement with those of Thwaites and Voelz. Nielsen also examined the three-
dimensional problem, and performed some experiments. The experiments largely agreed
with the numerical calculations, with errors thought to be caused in part by porosity of the
sail and boundary-layer effects, although Chapleo (1968) argued that errors may have been
caused by overestimation of the lift due to camber. Barakat (1968) studied the influence of
the porosity of the sail and extended the theory to a two-lobed sail, and Tuck & Haselgrove
(1972) considered the problem in which the sail is not rigidly attached to the trailing edge
but instead attached to a rope, or sheet, which is inflexible and fixed at one end. They
found that as the length of the sheet increases the lift decreases but the stability of the sail
increases. A three-dimensional linear analysis was completed by Nickel (1987), using the
‘lifting line theory’ of Prandtl (1918).

A more general study, valid for larger angles of incidence than those considered by
Voelz or Thwaites was completed by Dugan (1970) who used the behavioural model
developed by Cisotti. This was a nonlinear free-streamline model, allowing separation of
the flow at the trailing edge, assuming constant tension in the sail. A nonlinear singular
integral equation was found and solved numerically, thus obtaining the sail profile and the
drag, lift and moment experienced by the sail, although the model breaks down for small
angles of attack. Vanden-Broeck (1982) used a similar model to derive and numerically
solve an integro-differential equation for arbitrary angles of incidence. Jackson (1983)
considered an extensible sail, and derived a nonlinear equation for arbitrary angles of
attack. Computational procedures were also used for a viscous flow with a Reynolds
number of between 2 × 103 and 104 for elastic, inextensible, and constant tension sails,
by Smith & Shyy (1995a) for steady flow, and Smith & Shyy (1995b) for unsteady flow.
Other unsteady analyses include that of Bäcker et al. (1991), for the related nonlinear
problem of fibres fluttering in an air spinning process, and that of Haselgrove & Tuck
(1976), who studied a finite-length sail whose rear end was connected to the downstream
mast by a length of ‘two-dimensional sheeting’. They investigated small disturbances from
steady sail profiles, finding that there was a critical value of the sail tension which, if not
attained, led to instability. In some respects their model was similar to the one presented
below, though they did not study general unsteady sail motions. There are, however, major
differences. The fact that Haselgrove & Tuck considered a massless sail meant that sail
inertia was not important. As we shall see below, this effect can dominate the flow under
some circumstances. Another key difference between their model and ours is the inclusion
in the former of an infinite wake downstream of the sheeting. Once again, this materially
alters the results.

Although the models of Voelz, Thwaites, and Nielsen, and the equations derived, are
essentially the same, comparisons to the steady results will be made using the work of
Thwaites (1961) (henceforth referred to as ‘Thwaites’), as this is the most complete and
detailed analysis of the theoretical steady problem. A key finding of Thwaites is the non-
uniqueness of the sail shape for sufficiently small angles of attack. For all non-zero angles
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FIG. 1. Schematic diagram of sail geometry.

of attack exactly one concave solution with the sail shape the same sign as the angle of
attack exists, but for smaller angles of attack there are a finite number of other solutions,
corresponding to lower values of the tension, with each lower tension positive and negative
solution pair containing one more inflexion than the previous one.

2. Equation of motion

The majority of previous studies (in particular Thwaites (1961) and Voelz (1950)) have
considered the flow of a uniform stream at a constant angle of incidence α to a two-
dimensional, inextensible, porous sail. The goal of this study is to consider the case where
the angle of attack α is a function of time, so that the sail shape y = S(x, t) is also time-
dependent. This case is clearly of greater practical value than the purely steady case, and
has not been examined previously for a sail of non-zero mass. For simplicity the porosity of
the sail will henceforth be taken to be zero, although the extensions required to the analysis
below to include the effects of porosity are not difficult. A schematic diagram of the flow
is shown in Fig. 1.

For consistency we largely follow Thwaites’s notation. We assume the length of the sail
to be given by c(1+ε), where c is the distance between the masts. This defines ε, the small
parameter in the problem. (Other definitions are possible; Thwaites based his scalings on
the small parameter α, but since in this case α is time-dependent, this is a less convenient
variable to use.) The sail shape thus satisfies

c(1 + ε) =
∫ c

0
(1 + S′2(x))

1
2 dx, (1)

which implies that S = O(c
√

ε). Ultimately, (1) will be used to close the model and
determine the sail shape for a given excess length and angle of attack.

Under the assumptions of incompressible, irrotational, inviscid flow, the velocity
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potential Φ for the flow is given by

Φ(x, y, t) = U (x cos α(t) + y sin α(t)) + 1

2π

∫ c

0
γ (ξ, t) arctan

(
y

ξ − x

)
dξ, (2)

where γ is the (unknown) vortex strength at a given point on the sail. We assume that γ

is small compared to U (in a sense that will be quantified later) so that the sail constitutes
only a small perturbation to uniform flow. The condition that the sail is a free boundary is

D

Dt
(y − S(x, t)) = 0,

which gives

Φy

Φx
= Sx + St

Φx
. (3)

The derivatives of Φ on the sail may be obtained from (2) by taking the limit as y → 0,
yielding (for α 	 1)

Φx = U (1 + O(α2)) + O(γ ),

Φy = Uα + 1

2π

∫
−

c

0

γ (ξ, t)

ξ − x
dξ + o(α).

Since S = O(c
√

ε), this (along with (3)) immediately shows that γ = O(Uα), and that

α = O(ε
1
2 ). To leading order therefore

Sx + St

U
= α(t) + 1

2πU

∫
−

c

0

γ (ξ, t)

ξ − x
dξ . (4)

Equation (4) relates the vortex distribution γ to the sail shape S. To further relate γ to S,
we perform a force balance on a sail element. It is convenient to express the vertical force
per unit area of sail exerted on the sail as the sum of the force per unit area FT resulting
from the tension in the sail, and the aerodynamic force per unit area, FA. The equation
governing the motion of the sail over an element of the sail with arc length δs is then

FT δs + FAδs = ρ′δs
∂2S

∂t2
, (5)

where ρ′ is the mass per unit area of the sail (kg/m2).
To determine FT , consider an element of the sail of length δs whose tangent makes an

angle ψ with the x-axis and whose end-points are at (x, S(x)) and (x + δx, S(x + δx))

respectively. Comparison of forces in the x-direction shows that δT = 0 to lowest order,
where T is the tension force per unit area of the sail. The y-component FT is therefore
given by

FT = (T + δT ) sin(ψ + δψ) − T sin ψ 
 T cos ψδψ . (6)

The aerodynamic force per unit area, FA, satisfies

FAδs = (p− − p+)δs cos ψ
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and to leading order is therefore simply the pressure difference across the sail at a given
point. It may therefore (in the absence of body forces, which could easily be included if
desired) be determined from Bernoulli’s equation in the form

lim
y→0+

(
Φt + p

ρ
+ 1

2 q2
)

= lim
y→0−

(
Φt + p

ρ
+ 1

2 q2
)

, (7)

where ρ is the density of the free stream (kg/m3) and the fluid velocity is denoted by q.
This may be written in the form

[Φt ]
0+
0− +

[
p

ρ

]0+

0−
+ 1

2

[
q2

]0+

0− = 0. (8)

It is easiest to consider the three terms separately. Equation (2) gives

Φt = Uα′(t)(y cos α(t) − x sin α(t)) + 1

2π

∫
−

c

0
γt (ξ, t) arctan

(
y

ξ − x

)
dξ . (9)

The first term in this equation is clearly continuous across the boundary y = 0. The
integrand in the second term is also continuous in y, except possibly at ξ = x . However,
this part of the integral does not contribute to (8) since at this point we make the standard
assumption, common to many studies of this form, that the motion of the sail is not affected
by the vorticity that it sheds.

The pressure term in (8) is simply [p/ρ]0+
0− which is −FA. The third term is ρUγ (x, t)

as in the steady case. Thus (8) becomes

FA = ρUγ (x, t). (10)

We may combine (5), (6) and (10) to give

ρ′Sttδs = T cos ψ δψ + ρUγ cos ψ δs + O(ψδψ),

and hence, in the limit as ψ tends to zero,

ρUγ (x, t) + T Sxx = ρ′Stt . (11)

This gives an expression for γ which may in turn be substituted into (4) to give the time-
dependent sail equation,

Sx + St

U
= α(t) + 1

2πρU 2

∫
−

c

0

ρ′Stt (ξ, t) − T Sξξ (ξ, t)

ξ − x
dξ . (12)

The boundary conditions merit some discussion. Since the two ends of the sail are fixed,
we have S(0, t) = S(c, t) = 0. The system may be closed by invoking the Kutta condition,
which asserts that the fluid velocity at the trailing edge of the sail is finite. Examining the
expressions for Φx and Φy , we see that this requirement is tantamount to assuming that
both γ and ∫

−
c

0

γ (ξ, t)

ξ − x
dξ
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are bounded at x = c. The latter can only occur if γ − A(t)(c−x)−1/2 → 0 for some A(t);
the former then requires that A(t) must be zero, and thus γ itself must be zero at the sail
trailing edge. Equation (11) now requires that Sxx (c, t) must be zero if the Kutta condition
is to be satisfied, a result identical to that which applies for the steady equation.

The unsteady equation may also be expressed in non-dimensional coordinates; we set

x = cx∗, ξ = cξ∗, t = c

U
t∗, S(x, t) = cε

1
2 S∗(x∗, t∗),

µ = 2ρc

ρ′ , β =
(

T

ρ′U 2

) 1
2

, α(t) = ε
1
2 α∗(t∗).

In these coordinates (12) becomes

1

π

∫
−

1

0

S∗
t∗t∗ − β2S∗

ξ∗ξ∗

ξ∗ − x∗ dξ∗ = µ(S∗
x∗ + S∗

t∗ − α∗(t∗)), (13)

with the boundary conditions S∗(1, t∗) = S∗(0, t∗) = 0 and S∗
x∗x∗(1, t∗) = 0. The initial

conditions necessary are that the values of S∗ and S∗
t∗ are specified for x∗ ∈ [0, 1]. As

expected, when all time derivatives are set to zero, the steady sail equation of Voelz (1950)
is recovered. The equation (13) is dependent on the two non-dimensional parameters µ

and β. Of these, µ is dependent only upon the initial conditions and is constant in space
and time. Whilst at any particular instant in time the tension T is also constant to leading
order (a consequence of the force balance in the x-direction), it must be chosen so that the
solution of (13), S(x, t), has constant length. The tension (and hence the quantity β) must
therefore be regarded as being an unknown function of time. In addition to the equation of
motion and the boundary and initial conditions, the length condition (1) must be satisfied.
With the above scalings, the length condition becomes

1 = 1
2

∫ 1

0
S∗′2

(x∗, t∗) dx∗ + O(ε). (14)

A solution for S∗(x∗, t∗) for a given β will therefore not be regarded as a physical
solution (that is, a solution which conserves sail length) unless that solution satisfies (14)
for all values of t∗. This may not be possible for constant values of β and so the tension,
β, must be considered as a function of time.

The net lift on the sail is an important variable to determine. The force on each mast
may be calculated by considering an element of length δx at the end of the sail. Since in
this linear model all forces are horizontal to leading order and the tension, T , is constant,
the horizontal force on each mast has magnitude T , that is, 2ρU 2cβ2/µ. In the y-direction
the force on the mast is given by the y-component of the tension, namely T ψ , and thus (in

non-dimensionalized coordinates) the force on the upstream mast is 2ρU 2cε
1
2 β2S∗′(0)/µ,

whilst the force on the downstream mast is −2ρU 2cε
1
2 β2S∗′(1)/µ. The net lift on the sail

is thus

L(t) = 2β2ρU 2c

µ
ε

1
2 (S∗

x∗(0, t) − S∗
x∗(1, t)). (15)

From a practical point of view, (15) is particularly easy to work with as it involves only the
derivatives of the sail shape at x∗ = 0 and x∗ = 1.
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3. Steady solutions to the sail equation

With α∗ constant and all time derivatives set equal to zero, (13) becomes the extensively
studied non-dimensional steady sail equation

− 1

π

∫
−

1

0

S∗
ξ∗ξ∗

ξ∗ − x∗ dξ∗ = λ(S∗(x∗) − α∗), (16)

with

S∗(0) = S∗(1) = S∗′′
(1) = 0, 1 = 1

2

∫ 1

0
S∗′2 dx∗,

where, for consistency with previous authors, we have set λ = µ/β2. Since we shall
frequently use solutions to (16) as initial conditions for unsteady calculations we briefly
review the more important properties of (16).

Although no closed-form solutions of (16) are known, many different numerical
methods have been proposed and successfully used to solve (16). (When steady
calculations were required in this study, we used a Chebyshev collocation method.)
Assuming that the linear singular integro-differential equation (16) possesses a unique
solution for specified values of α∗ and λ subject to the boundary conditions S∗(0) =
S∗(1) = S∗′′(1) = 0, values of λ (and thus of the sail tension) may be inferred for a
given angle of attack α∗ by choosing λ so that the length condition is satisfied. Figure 2
shows λ plotted against α∗, and suggests that it is simpler to regard λ as specified and
α∗ as calculated. The fact that the (α∗, λ) curve shown in Fig. 2 is not one-to-one when
α∗ < α∗

c ∼ 0·971 is of interest. For a fixed value of α∗ less than α∗
c the lowest possible

value of λ in Fig. 2 corresponds to a concave sail shape where S∗ has the same sign as
α∗, much as one might expect. As λ increases, the next branch of the curve gives solutions
where S∗′′ is still of one sign, but S∗ and α∗ are of opposite signs. Branches further up the
diagram correspond to sail shapes that cross the axis an increasing number of times. Few
attempts have been made to determine the stability of these multiple solutions (though see
Haselgrove & Tuck (1976)). One reason for studying the unsteady version of the problem
is to try to determine whether or not any of the more highly oscillatory sail shapes are
stable and might ever be expected to be observed.

Another property of interest in the steady case is the lift, which is given by (15). For
certain values of λ, the flow satisfies a Kutta condition at x∗ = 0 as well as at x∗ = 1. The
first six such eigenvalues are given by λ = 2·316, 5·507, 8·635, 11·78, 14·93 and 18·08;
asymptotic formulae may be developed for larger eigenvalues. Solutions corresponding to
even-numbered eigenvalues are antisymmetric about x∗ = 1

2 and have zero lift, whilst odd-
numbered eigenvalues are symmetric about x∗ = 1

2 and also generate solutions for the case
α∗ = 0.

4. Limiting cases of the sail equation

The unsteady sail equation (13) is a partial singular integro-differential equation. Moreover,
because of the need to determine β(t) such that (14) is satisfied, it is nonlinear. In general,
therefore, it will be necessary to determine solutions numerically. Parametrically, (13)
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FIG. 2. Calculated values of λ vs. α∗ for steady sail equation.

depends upon the scaled angle of incidence α∗, the tension β, and µ, an inverse measure
of the mass of the sail. Of these the value of β is determined by the length condition, so
that for a sail of a given length the shape depends only upon α∗ and µ. Clearly both large
and small values of α∗ are of interest, and although a typical sail in air would have to be
very long before µ became large, for flexible sheets in water or other liquids µ may well be
large. Thus both large and small values of µ are also of interest. Before embarking on a full
numerical solution of the problem, we examine various limiting forms of the equations that
correspond to large and small values of α∗ and µ. As well as giving rise to some interesting
mathematical problems and conclusions in themselves, these limiting cases may, under
some circumstances, be used to provide validation for numerical methods.

Two limiting cases may be dealt with immediately: when α∗ 	 1, we simply obtain
one of the steady solutions corresponding to α∗ = 0. When dα∗/dt∗ 	 1 the angle
of incidence changes too slowly for fully unsteady effects to be important, the problem
is quasi-steady and solutions may be calculated by merely solving a sequence of steady
problems parametrized by t∗.

4.1 Small mass limit

Consider first the case where the mass of the sail is small so that µ � 1. Dividing (13) by
µ gives

1

µπ

∫
−

1

0

S∗
t∗t∗ − β2S∗

ξ∗ξ∗

ξ∗ − x∗ dξ∗ = S∗
x∗ + S∗

t∗ − α∗(t∗) (17)
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and, assuming that both β and α∗ remain of order 1, suggests that the correct leading-order
equation is

S∗
x∗ + S∗

t∗ − α∗(t∗) = 0.

This equation has the general solution

S∗ = f (x∗ − t∗) + A(t∗),

where f is an arbitrary function and At∗ = α∗. We must now consider the boundary
conditions. Clearly if it is to be true that S∗(0) = S∗(1) = 0 then necessarily

f (1 − t∗) + A(t∗) = 0 and A(t∗ − 1) ≡ A(t∗), (18)

which rules out a solution for general α∗(t∗). Nevertheless for periodic functions α∗
with period 1, solutions may exist. We interpret such solutions as oscillatory eigenvalue
solutions where both the lift and the tension are small relative to ρU 2c; specifically the sail
tension is O(ρ′U 2) and the lift is O(ρ′U 2√ε). A further restriction is placed on α∗ by the
length condition, which requires that

1
2

∫ 1+r

1
α∗2

(q) dq = 1

for arbitrary r . For example, if α∗ = 2 cos 2nπ t∗, then the function

S∗(x∗, t∗) = 1

nπ

(
sin 2nπ(x∗ − t∗) + sin 2nπ t∗

)
(19)

is a solution that satisfies the length condition for all integer values of n. Although (19) has
the property that S∗(0, t∗) = S∗(1, t∗) = 0, the Kutta condition does not hold. As might be
anticipated, however, after further investigation it transpires that the problem is of singular
perturbation type, and in a boundary layer of width O(1/µ) near x∗ = 1 an inner problem
applies where time derivatives are negligible. Here the problem becomes quasi-steady and
the Kutta condition is satisfied. In this region, the length condition is not affected to leading
order.

Figure 3 shows a plot of (19) for n = 1, with t∗ taking the values 0, 0·2, 0·4, 0·6, 0·8.
The solution is periodic with period 1.

For functions α∗ that do not satisfy (18), or are not periodic with period 1, a solution for
µ 	 1 is clearly not possible with the above assumptions. This is because the assumption
that β remains of order 1 is dangerously naive, particularly bearing in mind the dependence
of the tension on the angle of incidence in the steady-state problem. In general, we find
that for large values of µ the correct asymptotic balance is achieved by assuming that β2

scales with µ. Thus only the S∗
t∗t∗ term is negligible in (17) and the leading-order equation

becomes

− 1

π

β2

µ

∫
−

1

0

S∗
ξ∗ξ∗

ξ∗ − x∗ dξ∗ = S∗
x∗ + S∗

t∗ − α∗(t∗) + O(µ−1), (20)

with the same boundary conditions as before, save for the fact that only S∗ rather than S∗
and S∗

t∗ must be prescribed at t∗ = 0. (For t∗ 	 1 a small-t∗ boundary layer must be



156 A. D. FITT AND T. R. B. LATTIMER

-1

-0·8

-0·6

-0·4

-0·2

0

0·2

0·4

0·6

0·8

1

0 0·2 0·4 0·6 0·8 1
x*

S*(x*,t*)

t* = 0

t* = 0·2                   

t* = 0·4

t* = 0·6

t* = 0·8

FIG. 3. Successive sail shapes for a small mass sail with O(1) tension.

taken into account; we do not pursue this further here.) A numerical scheme to solve this
equation is described in Lattimer (1996).

The above analysis has assumed that α∗ remains of order 1. For a sail of low mass with
a high angle of incidence (that is, µ � 1 and α∗ � 1) the α∗ term dominates the right-
hand side of (20), requiring that β2 = O(µα∗) and giving essentially the same equation as
for the steady-state case for large α∗, namely

1

π

β2

µ

∫
−

1

0

S∗
ξ∗ξ∗

ξ∗ − x∗ dξ∗ = α∗(t∗) + O(µ−1) + O(α∗−1
).

This has the same solution as the steady-state equation for large λ given by Thwaites
(1961).

4.2 The solution for large α∗

Although α must be much less than one to satisfy the assumption that the deflection from

the uniform stream is small, there is no reason why α∗ (defined by αε− 1
2 ) should remain

of order 1. The behaviour for large α∗ when µ is large or small has been discussed at the
end of the two preceding sections. If µ is of order 1 then in order for (13) to balance, β2

must scale with α∗, and all other terms are negligible, leaving

1

π

∫
−

1

0

S∗
ξ∗ξ∗

ξ∗ − x∗ dξ∗ = µ
α∗

β2
. (21)

In this case solutions are therefore quasi-steady, similar to those discussed by Thwaites
(1961) for a high tension (or, equivalently, high angle of incidence) sail. We note also that
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the solution of (21) clearly scales with µα∗β−2 which, according to the length condition,
must be constant. Thus β2 is proportional to α∗ and S∗ is completely independent of time.
Equation (21) may now be solved by standard methods to yield

β2(t∗) = µα(t∗)

√
3π2

128
− 1

6
.

Physically, this result may be interpreted as stating that a high relative angle of
incidence implies a high tension. The inertia of the sail becomes negligible relative to the
forces acting upon it and the equation of motion becomes a balance between the tension
and the uniform part of the flow. Since only one sail shape provides the right balance for
this, this shape remains constant so long as α∗ is much greater than unity, even though α∗
might vary with time.

4.3 Large mass limit

For a sail of large mass per unit area, the parameter µ may be taken to be asymptotically
small. For order 1 values of α∗ in the limit as µ → 0, the right-hand side of (13) tends to
zero and thus the finite Hilbert transform of S∗

t∗t∗ −β2S∗
x∗x∗ must be zero, so S∗

t∗t∗ −β2S∗
x∗x∗

must be proportional to x∗− 1
2 (1 − x∗)− 1

2 . The Kutta condition Sx∗x∗ = 0 may now be
applied to show that, when α∗ is of order 1,

S∗
t∗t∗ − β2S∗

x∗x∗ = 0, (22)

with the usual boundary conditions and the length condition applying. The initial
conditions for (22) determine the evolution of β; if S∗

t∗ = 0 initially and S∗(x∗, 0) =
S∗

0 (x∗) then β = 0 and S∗(x∗, t∗) ≡ S∗
0 (x∗), a physically reasonable conclusion which

simply asserts that the sail is too heavy to be moved by a free stream of small angle. If
S∗

t∗ is initially non-zero then the sail has inertia and in general β is an order 1 function
of time. Although in this case the aerodynamic effects are negligible, the inertia effects
are balanced by the tension to leading order. The governing equation is a wave equation
with a non-constant wave speed, reflecting the requirement that the tension varies in such
a way as to preserve the sail length. The sail therefore behaves like a string under variable
tension, with the length being fixed not only at leading order, but also at the level defined
by the perturbations of the string.

If α∗ is of order µ−1, then the free stream is able to influence the sail motion and the
final term in (13) is significant. The sail shape now satisfies the partial singular integro-
differential equation

1

π

∫
−

1

0

S∗
t∗t∗ − β2S∗

ξ∗ξ∗

ξ∗ − x∗ dξ∗ = −µα∗(t). (23)

When (23) is inverted using standard methods detailed in Muskhelishvili (1953), we
retrieve the inhomogeneous wave equation

S∗
t∗t∗ − β2S∗

x∗x∗ = µα∗
√

1 − x∗
x∗ . (24)
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In contrast to (22), (24) possesses steady solutions that satisfy S∗(0) = S∗(1) = S∗′′(0).
If S∗

t∗ = 0 when t∗ = 0 then β2 scales with α∗ and the steady solution is maintained for
all time. If the sail velocity is not initially zero, then once again β changes as the motion
progresses.

4.4 The large tension limit

For order 1 values of α∗ and µ, the possibility arises that the nonlinear length condition (14)
might require β to become large for a short period of time during the flow. If this happens,
the aerodynamic force will no longer be able to balance the tension force and the dominant
balance becomes that between tension and acceleration. In this case, we define a scaled
time τ by dτ/dt∗ = β. If we use similar reasoning to that in Section 4.3, the sail equation
becomes

S∗
ττ + β ′(t∗)

β2(t∗)
S∗
τ = S∗

x∗x∗ + O(β−1). (25)

We consider the relative sizes of the terms in (25): if the S∗
τ term dominates, then to leading

order S∗
τ = 0 which is plainly absurd. If the term is negligible, then the behaviour of S∗

is governed simply by the wave equation with boundary conditions S∗(0) = S∗(1) = 0.
This leads to oscillatory solutions, contradicting the assumption that β becomes large. It
follows that necessarily β ′/β2 is of order 1, in which case β ∼| t∗ − t0 |−1 for some t0.

If large values of β should occur, then we may expect S∗ to change rapidly in a short
period of time. One possible physical interpretation of this is that the tension becomes so
large that the sail breaks. In one case examined numerically below we continued computing
even though β became large; however, since the numerical method contains an implicit
assumption that the sail does not move by large amounts in any short time period, these
results should be treated with suspicion (see Section 7.3).

5. Further properties of the equation of motion

5.1 Energy

In order to discuss the energy dissipation of a moving sail it is convenient to rewrite (13)
in terms of two variables, yielding

S∗
t∗t∗ − β2S∗

x∗x∗ = µγ ∗(x∗, t∗), (26)

1

π

∫
−

1

0

γ ∗(ξ∗, t∗)
ξ∗ − x∗ dξ∗ = S∗

x∗ + S∗
t∗ − α∗. (27)

The first of these equations is essentially Newton’s second law, with γ ∗ representing the
aerodynamic force and the S∗

x∗x∗ term representing the force due to the tension. Since to
leading order the applied force is in the y-direction, for a given x∗ the distance travelled
against the force is given by dS∗ evaluated at fixed x∗, that is, S∗

t∗dt∗. This suggests that
we may determine the energy by multiplying (26) by St∗ and integrating with respect to x∗
between 0 and 1. Performing these computations, we find that

d

dt∗

(
1
2

∫ 1

0
S∗

t∗
2 dx∗

)
− β2

∫ 1

0
S∗

t∗ S∗
x∗x∗ dx∗ = µ

∫ 1

0
γ ∗S∗

t∗ dx∗.
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The first term in this equation clearly corresponds to the kinetic energy of the sail. The
integral in the second term may be integrated by parts to give

[St∗ Sx∗ ]1
0 −

∫ 1

0
S∗

x∗t∗ Sx∗ dx∗ = 0 − ∂

∂t∗

(
1
2

∫ 1

0
S∗

x∗ 2 dx∗
)

= 0,

since St∗ is zero at both ends of the sail and the length condition means that the integral
over (0, 1) of S2

x∗ is constant. Physically, the fact that this integral (being the work done by
the tension force on the sail) is zero merely expresses the inability of an inextensible sail
to store energy. The energy equation as a whole therefore becomes a balance between the
kinetic energy and the energy obtained from the aerodynamic lift. It remains to evaluate
the contribution from the latter, which may (if required) be expressed in terms of S∗ only
using (27). This does not, however, provide a great deal of insight into the problem for
order 1 values of µ, and for an inextensible sail it is more convenient to write the energy
equation as

d

dt∗

(
1
2

∫ 1

0
S∗

t∗
2 dx∗

)
= µ

∫ 1

0
γ ∗S∗

t∗ dx∗. (28)

We see that for µ 	 1 (a sail of large mass), the energy contribution from the
aerodynamic force, which is proportional to µ, is small, and so only the kinetic energy
term remains. For small µ therefore, the kinetic energy of the sail is constant and there is
no dissipation.

In the case where µ is small but α∗µ is of order 1, an expression for the energy may
again be obtained, since in this case (27) becomes, to leading order,

1

π

∫
−

1

0

γ ∗(ξ∗, t∗)
ξ∗ − x∗ dξ∗ = −α∗,

giving γ ∗ = α∗{(1 − x∗)/x∗} 1
2 (see Muskhelishvili (1953)). Hence the energy equation,

from (28), is

∂

∂t∗

(
1
2

∫ 1

0
S∗

t∗
2 dx∗

)
= µα∗

∫ 1

0
S∗

t∗

√
1 − x∗

x∗ dx∗. (29)

This shows that the sail may gain or lose kinetic energy, and in particular that if S∗
t∗ is of

the same sign for all values of x∗, then the sail must gain kinetic energy if this sign is the
same as that of α∗, and lose kinetic energy if the signs are opposite. This is the expected
result, for a sail moving against the cross-flow is doing work against it and therefore loses
energy to it.

5.2 Stability

One good reason for proposing and studying the unsteady sail equation (13) is to determine
whether or not various steady solutions are stable. It is not immediately clear what is meant
by ‘stability’ in this context, for the length condition (14) ensures that sail deflections
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cannot become unbounded. Clearly it is possible, however, for the sail tension (and thus
β) to increase even though the length condition is still satisfied. Presumably large sail
tensions are likely to appear numerically as increases in β lead to circumstances where it
is ever harder for the numerical code to ensure that the length condition is satisfied. We
thus interpret ‘instability’ as exponential growth not in sail deflections, but in β. Other
instabilities are also possible; one could imagine, for example, behaviour where the sail
develops oscillations whose amplitude tends to zero but whose frequency becomes large
(for example, oscillations of the generic type S(x) ∼ sin(nx)/n for large n). We have not
observed such behaviour in any numerical experiments.

As far as a complete linear stability analysis is concerned, matters are complicated by
the fact that the stability problem does not possess spatially exponential solutions. Linear
stability for this problem is currently being investigated, and although some preliminary
results have been obtained, discussion of these must be postponed for another study.

6. The numerical scheme

Although it is instructive to analyse asymptotic limits of (13), in general there seems to be
no hope of determining closed-form solutions and we are forced to proceed numerically.
Since the literature concerning the numerical solution of nonlinear singular partial integro-
differential equations seems to be rather sparse (the only previous study that deals with
the numerical solution of a related problem seems to be that of Spence & Sharp (1989)),
we proceed in an ad hoc fashion. Experience has shown that it is almost always a good
idea to rearrange singular integral equations so that the highest-order derivatives do not
occur under a singular integral operator. We therefore invert (13) according to the methods
described in Muskhelishvili (1953) and, for ease of computation, we also set T = 2t∗,
X = 2x∗ − 1 and Y = 2ξ∗ − 1 so that the domain of the problem becomes (−1, 1). The
governing equation of motion becomes

S∗
T T − β2S∗

X X = − µ

2π
√

1 − X2

∫
−

1

−1

(S∗
Y + S∗

T )
√

1 − Y 2

Y − X
dY

+αµ

4

√
1 − X

1 + X
+ C(T )√

1 − X2
. (30)

The eigenfunction C(T ) must be chosen so that the Kutta condition at X = 1 is satisfied,
giving

C = − µ

2π

∫ 1

−1
(S∗

Y + S∗
T )

√
1 + Y

1 − Y
dY . (31)

This equation was solved using an explicit finite-difference formulation in Lattimer
(1996). However, this method was limited by the fact that, due to the behaviour of S∗(X, T )

near X = −1 and the square-root singularities in the formulation (30), accuracy was
compromised. An alternative, more accurate numerical formulation may be obtained by
using first and second kind Chebyshev polynomials, defined respectively by Tn(cos θ) =
cos(nθ), and Un(cos θ) = sin((n + 1)θ)/ sin θ with θ = cos−1 X . The main advantage
of using this form of approximation is that, by exploiting some standard properties of
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Chebyshev polynomials, all of the required singular integrals may be calculated in closed
form, thereby minimizing a substantial source of potential error. To derive a numerical
scheme, a number of standard properties of Chebyshev polynomials are required; these are
collected together (equations (38)–(49)) for reference in the Appendix.

For the purposes of deriving a numerical scheme, we assume that the solution to (30)
may be written as a sum of Chebyshev polynomials in the form

S∗(X, T ) =
∞∑

n=0

an(T )Tn(X). (32)

On substitution of this expansion into (30) we find that

∞∑
n=0

(
änTn − β2anT ′′

n

)
= αµ

4

√
1 − X

1 + X

+ µ

2
√

1 − X2

∞∑
n=0

(nanTn − nan (33)

+ȧn[−(1 − X2)Un−1 + (X − 1)δn0])
where derivatives with respect to T and X are denoted using a dot and a dash respectively.
By multiplying (33) by Tm and integrating over (−1, 1) we obtain (assuming for the
moment that β is known) an infinite system of linear differential equations for the an .
This system may be written in the form

∞∑
n=0

Amnän + Bmnȧn + Cmnan − β2 Dmnan = Zm, (34)

where, for m � 0,

Amn = −2En+m

{
n2 + m2 − 1

[(n + m)2 − 1][(n − m)2 − 1]

}
,

Bmn = µπ

8
(δn,m+1 − δn,m−1) − µπ

4
δn0δm1 + µπ

2
δn0δm0,

Cmn = −µn
π

4
(δnm + δn0δm0) + µn

π

2
δm0,

Dmn = nEn+m

(
2n − m

k=|n+m|/2∑
k=1+(|n−m|/2)

2

2k − 1

)
,

Zm = αµπ

4
(δn0 − δn1/2).

To form a numerical scheme, we truncate (32) after N + 1 terms. The linear equations (34)
are applied for 0 � m � N −2 and to close the problem and determine the N +1 unknowns
ai (i = 0, 1, . . . N ) at a given time we use the boundary conditions S∗(−1) = S∗(1) = 0.
These give

N∑
n=0

an =
N∑

n=0

(−1)nan = 0. (35)
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It is convenient to absorb (35) into our previous definitions by defining the coefficients in
(34) for all m and n between 0 and N . This may be accomplished by setting

AN−1,n = 1, BN−1,n = CN−1,n = DN−1,n = Z N−1 = 0, 0 � n � N ;
AN ,n = (−1)n, BN ,n = CN ,n = DN ,n = Z N = 0, 0 � n � N .

With these definitions the truncated form of (34) gives sufficient equations to determine
the an (0 � n � N ) for a given β. To determine β the length condition (14) must be used.
From (43) and integration by parts we find that

∫ 1

−1
S∗

X S∗
XT dX = 0 (36)

leads, in discretized form, to
N∑

n=0

N∑
m=0

qnmanȧm = 0,

where

qnm = nm En+m

k=|n+m|/2∑
k=1+(|n−m|/2)

2

2k − 1
. (37)

This implementation of the length condition is tantamount to the assertion that the time
derivative of the sail length should be zero. Calculation of the sail length at each instant
during the flow therefore provides an additional check that the scheme is performing
accurately.

The Chebyshev coefficients an and the parameter β may now be determined. We use
a finite-difference scheme, employing backward differences for the first derivative. This
gives

Amn
an(T + ∆T ) − 2an(T ) + an(T − ∆T )

(∆T )2
+ Bmn

an(T ) − an(T − ∆T )

∆T

+Cmnan(T ) − β2(T )Dmnan(T ) = Zm(T ).

At each time step, for a given β the new values of an may be determined by solving a
system of linear equations. This may be accomplished in a very efficient manner, since the
coefficient matrix Amn does not vary with time and thus a single LU decomposition may
be used throughout. To complete each step a bisection method is used to determine the
value of β that causes the length condition to be satisfied.

Numerical experiments using the scheme described above have shown that, as might
be expected, for numerical stability the time step ∆T must be chosen to be sufficiently
small. Because of the structure of the matrices involved, however, it does not seem easy
to determine an analytical expression for a CFL-type condition that would allow the time
step to be chosen automatically. Some formal analysis (not given here) has suggested that
a suitable stability condition is given by requiring that n

√
log nβ∆T < C , where C is a

constant, and use of this with C = 0·1 has invariably produced stable results.
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TABLE 1
Convergence of mid-sail displacement as N increases (λ = 0·5, α∗ = 1)

N 10 20 30 40 50 100 200
S(0·5) 0·59425 0·59262 0·59299 0·59286 0·59293 0·59290 0·59290

7. Results

7.1 General details and validation

The scheme described above was coded using FORTRAN. Calculations were carried out
using a 200 MHz PC running Linux, the linear equations being solved using the NAG
library routines F01BTF and F04AYF. For all of the displayed sail shapes the first 50 or
100 terms of the Chebyshev series were used, though in all cases further runs were carried
out to ensure that the results were not unduly sensitive to the value of N used. Some idea of
the typical convergence properties of the results as N increases can be gained by studying
the dependence of Chebyshev solutions on the steady problem. For example, with α = 1
and λ = 0·5, the sail mid-point displacement for various N is shown in Table 1.

The time taken to obtain the numerical solutions varied from case to case, but a few
minutes of CPU time may be regarded as a typical run time.

A number of special cases were examined for the purposes of code validation. First,
the asymptotic limit µ = O(1), α∗ � 1 was scrutinized. According to Section 4.2, with
µ = O(1) we should expect to find that, for α∗ � 1, changes in α∗ manifest themselves
only in changes to β whilst the sail shape is unaltered. In order to test this, computations
were begun from the steady solution with λ = 0·2, giving a calculated α∗ = 18·257.
The angle of attack α∗ was changed according to α∗ = 18·257 + t∗(0 � t∗ � 4). The
parameter µ was taken to be 1. The results in Fig. 4 show the sail shapes (solid lines) at
times t = 0, 1, 2, 3, 4; the curves for different times are indistinguishable showing that, in
spite of the change in the angle of attack, the sail shape remains virtually unaltered. The
symbols show the exact solution to (21), which is given by

S∗ =
(

3π2

128
− 1

6

)−1/2 [
3πx∗

8
− (x∗ − 1/2) sin−1

√
x∗

−
(

x∗

2
+ 1

4

) √
x∗√1 − x∗ − 1

8
sin−1(2x∗ − 1) − π

16

]
.

The closeness of the agreement suggests that the scheme is performing very satisfactorily
for this validation case; a calculation of the ratio β2/α∗ further confirms that, as expected,
this quantity is virtually independent of time and takes values within a few per cent of the

exact value, which is given by µ(3π2/128 − 1/6)
1
2 ∼ 0·254.

In addition to the µ = O(1), α � 1 case a number of other validation examples were
examined. Space does not permit the inclusion of any details, but our general conclusion
was that the code was functioning as expected and was both efficient and reliable.
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FIG. 4. Validation case with α � 1, µ = 1. Theoretical sail shape (�) and calculated sail shapes for t∗ = 1, 2, 3, 4
(solid lines; indistinguishable from one another).

7.2 Changing the curvature of a concave sail

We now examine a case where we alter the angle of attack α∗ so as to change the curvature
of a concave sail. We take µ = 2 and start the motion from the steady solution with α∗ = 2
(so that λ = 1·12 and thus β2 = µ/λ = 1·786). The value of α∗ is then reduced linearly
according to

α∗(t∗) =



2 (t∗ � 0),

2 − t∗ (0 < t∗ � 3/2),

1/2 (3/2 < t∗).

Calculations were performed using Chebyshev series with 100 terms and a time step
chosen according to the criterion discussed in Section 6. The general behaviour of the
numerical solution is much as one might expect; the sail tension decreases with the angle
of attack before oscillating about the steady-state (lowest branch) value corresponding to
α∗ = 1

2 . The tension parameter β2 is plotted against non-dimensional time t∗ in the top
diagram of Fig. 5. Note that when α∗ = 1

2 it is possible for λ to assume a number of
different values (see Fig. 2). However, the lowest branch solution corresponding to α∗ = 1

2
has λ = 1·854 and thus β2 = µ/λ = 1·079; clearly it is this steady-state solution about
which the sail oscillates.

The lower plot of Fig. 5 shows the initial steady-state position of the sail (�) and the
final theoretical steady-state sail shape (+). The dashed line shows the sail shape at time
t∗ = 16. It is somewhat unfortunate that solutions on the lower branch of the λ vs. α∗ tend
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FIG. 5. (Top figure) Tension parameter β2 vs. t∗ as angle of attack α∗ changes from 2 to 1/2. (Bottom figure)
Original sail shape (�), final steady sail shape for α∗ = 1/2 (+ symbols), calculated sail shape at t∗ = 16 (dashed
line).

to be visually rather similar, and this case is no exception; the similarity between the sail
shape for t∗ = 16 and the ‘final’ steady-state configuration is nevertheless unmistakable.
A careful examination of the kinetic energy and the numerical solution for large t∗ shows
that the anticipated steady state is reached, albeit rather slowly.

7.3 A case where the sail tension becomes large

We shall now examine a case where the tension in the sail becomes large. We take µ = 2,
use 100 terms of the Chebyshev series and begin with the steady ‘lowest branch’ solution
corresponding to α = 1, giving λ = 1·53 (see Fig. 2). The angle of attack α is now altered;
specifically we change α in a linear fashion from α = 1 to α = −1 over a time interval
of length 2. We might expect the sail to change from its initial shape to its mirror image as
α changes from 1 to −1. In the first stages of the flow, the successive sail shapes (shown
at various times in the bottom part of Fig. 6) suggest that the expected behaviour might
materialize: the behaviour of β and the kinetic energy (shown in the top part of Fig. 6)
indicates however that the final mirror image state is never approached.

The motion may be analysed using the results. Once the sail begins to move, the tension
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FIG. 6. (Top figure) Tension parameter β2 (solid line) and 10×kinetic energy vs. t∗ as angle of attack α∗ changes
from 1 to −1 for sail with µ = 2. (Bottom figure) calculated sail shapes at various times.

decreases; this decrease is accompanied by downward movement of the front portion of the
sail, which continues long after the angle of attack has finished changing. A small rise in
the kinetic energy may also be observed. From t∗ = 5 to about t∗ = 15, the front part of the
sail continues to move further below the axis, but there does not seem to be any approach
to a steady state. At about t∗ = 15 both β2 and the kinetic energy increase greatly. After
this crisis the tension and the kinetic energy briefly recover, but further large increases and
decreases are subsequently observed and it seems dangerous to give much credence to the
numerical results after t∗ = 15.

Before t∗ = 15, it seems that most of the aerodynamic force has gone into accelerating
the sail; however, when the sail can no longer accelerate in the negative direction the
tension must rise in order to counteract the aerodynamic force. At this point it is clear that
the tension term in (30) must be much larger than any other term in the equation, unless
Stt is large (the Hilbert transform is bounded everywhere save for x = 0 for bounded
continuous Sx and St ). Therefore large values of β may only exist over a time scale of
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order β−1, and during this time the sail equation reduces to

1

β2
Stt − Sxx = O(β−1).

This is the equation obtained in the large mass limit of Section 4.3. Since kinetic energy
is conserved by this equation it follows that when β becomes smaller again at the end of
this period, the kinetic energy of the sail is still of order β2. This suggests that S increases
for all x , and that the sail shape begins to return above the x-axis. It is only here that the
kinetic energy in the sail changes significantly, and there may be several oscillations before
the sail changes shape. We conclude that attempting to change the sign of sail curvature is
likely to lead to large sail tensions which, as noted above, has implications for the structural
integrity of the sail.

The key factor in the occurrence of large values of β is the fact that α changes
sign before the sail has moved significantly from its initial profile. This means that the
aerodynamic force acts in such as way as to produce negative lift. The resulting negative
values of St lead to an increase in the kinetic energy of the sail (see (28)). With a sail of
smaller mass, however, it is possible for the sail to move significantly before α becomes
negative. We therefore conjecture that large values of β may be avoided if a similar
experiment is performed on a lighter sail.

7.4 Motion of a sail of smaller mass

Since it is evident from the numerical results of Section 7.3 that inertia of the sail is
responsible for the high sail tensions that are predicted, we next examine a case where
the sail is lighter and so possesses less inertia. When computations are performed for
exactly the same case as above in Section 7.3, but with µ = 10, very different behaviour
is observed. The tension parameter β2 and the kinetic energy are shown as functions of
time in the top plot of Fig. 7. Once again the motion starts from α∗ = 1, λ = 1·53, so
that β2 = µ/λ = 6·536. The tension decreases slowly and then oscillates around a value
that may be visually estimated to be about β2 = 2·3. The top plot of Fig. 7 also shows
the kinetic energy (multiplied by a factor of 10). This reaches a maximum soon after the
angle of attack has stopped changing, but thereafter remains small. Sail shapes for various
times are shown in the bottom plot of Fig. 7; one forms the clear impression that (i) the sail
shapes seem to be approaching some sort of steady state and (ii) that steady state is not the
mirror image of the initial sail shape.

To explain this behaviour it is helpful to re-examine Fig. 2. Presumably any true steady
state that the motion eventually assumes or approaches must correspond to a point on the
(λ, α∗) curve of Fig. 2. Clearly only one other point on this curve satisfies | α∗ |
 1,
namely the extremity of the next branch up from the bottom one. At this point λ = 4·402.
The steady sail shape for this value of λ may be obtained by solving the steady problem
in the normal manner; this shape is shown (+ symbols) in the bottom plot of Fig. 7;
comparison with the computed sail shapes for later times in the flow provides convincing
evidence that the sail is indeed approaching the λ = 4·402 steady shape. We conclude
that, for this particular α∗(t∗), instead of reversing the sail has ‘jumped a branch’ on the
(λ, α∗)-diagram.
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FIG. 7. (Top figure) Tension parameter β2 (solid line) and 10×kinetic energy vs. t∗ as angle of attack α∗ changes
from 1 to −1 for small mass sail with µ = 10. (Bottom figure) Original sail shape (�), final steady sail shape for
α∗ = 1, λ = 4·402 (+ symbols), calculated sail shapes at various times.

One possible explanation for the differences observed between this and the previous
test case is that both cases are unstable, but the time at which the instability sets in somehow
increases with increasing µ. If this were so, then both this and the last case would be
unstable and we simply have not investigated the flow for long enough to observe the
instability. Whilst we cannot completely discount this hypothesis, we were unable (with
the present parameters) to reproduce the behaviour of the previous example no matter
how long we performed calculations for; as time increases the sail simply continues to
perform small oscillations about the λ = 4·402 solution. Other similar cases have also
been analysed and seem to confirm our present conclusions.

Of course, if the final value of α is so large that only concave sail shapes are possible,
then the oscillation observed above around one of the non-concave sail shapes cannot
occur. Now the sail must change sign, leading to the sort of instability seen in Section 7.3
whatever the value of µ.
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8. Conclusions

A fully unsteady model has been proposed for the motion of a two-dimensional sail in
an inviscid, incompressible flow. Although the full model leads to a nonlinear partial
singular integro-differential equation to which no closed-form solutions are known, various
asymptotic limits may be examined, and in some cases solved. Although some of
these limits represent gross simplifications to the full equation, they nevertheless predict
behaviour that seems consistent with the physical interpretation of the approximations
employed. They also lead, in some instances, to special cases which may be used to validate
the numerical method developed for the full equation.

In particular, the analytic solutions found for the light sail (equation (19)) indicate
that a non-zero angle of attack can still generate zero lift; a result that mirrors a similar
conclusion for the well-studied steady sail case. The problem where the relative angle of
incidence is large may also be solved entirely analytically (Section 4.2). In this case the
sail shape remains constant and the tension is proportional to the angle of incidence.

Very few previous studies have considered the numerical solution of time-dependent
nonlinear integro-differential equations of this sort. This is a little surprising, since such
equations inevitably occur when the behaviour of an inviscid main stream is coupled to a
perturbation flow. It is worth mentioning that we hope to apply numerical methods similar
to this to a variety of other flows as well as to further studies of unsteady sail motion.

As far as numerical results to the full problem are concerned, a variety of different
kinds of behaviour have been observed. The results presented in Section 7 show examples
of how the shape of the sail, the tension and the kinetic energy vary as the angle of attack
changes. In particular we note that for a variation between concave sail shapes with the
same sign camber, the sail shape approaches that of the final steady state in a predictable
manner, with little oscillatory behaviour. In contrast, when the sail shape changes camber
the sail is unable to assume the required final steady-state profile. The tension in the sail
becomes large and to all intents and purposes the sail must be deemed to have broken.
This difficulty does not occur for lighter sails, which are relatively unaffected by inertia-
inducing aerodynamic forces.

A great deal of future work is possible, and some is presently being undertaken. In
particular, we are studying the stability of various branches of the steady solution using a
standard linear stability method. Another matter that interests us is the elasticity of the sail.
If stretching is allowed then it seems that, since sail inertia may be ‘absorbed’ by elastic
effects, the problems of high tension in the sail may be largely avoided. Finally, we are
considering the behaviour of sails that are not pinned at one end, but which have some
bending stiffness. These may be interpreted as ‘stiff flags’, and also have relevance to the
air processing of textile sheets and fibres.
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Appendix: Properties of Chebyshev polynomials

The Chebyshev first and second kind polynomials

Tn(x) = cos(n cos−1 x), Un(x) = sin((n + 1) cos−1 x)/ sin(cos−1 x)

possess properties that are particularly suited to the development of spectral methods for
singular integral equations with Cauchy kernels. The results that are used to derive the
numerical scheme discussed in the main text are summarized below. The notation Qnm =
δn0δm0 is used, and En is defined to be 1 when n is even and 0 otherwise. We also define
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U−1(x) = 0 for convenience. For integers m � 0 and n � 0 we have

1

π

∫
−

1

−1

Un(ξ)
√

1 − ξ2

ξ − x
dξ = −Tn+1(x), (38)

1

π

∫
−

1

−1

Tn(ξ)
√

1 − ξ2

ξ − x
dξ = (1 − x2)Un−1(x) − xδn0 − 1

2δn1, (39)

1

π

∫ 1

−1
Tn(ξ)

√
1 + ξ

1 − ξ
dξ = δn0 + 1

2δn1, (40)

1

π

∫ 1

−1
Tn(ξ)

√
1 − ξ

1 + ξ
dξ = δn0 − 1

2δn1, (41)

1

π

∫ 1

−1
Un(ξ)

√
1 + ξ

1 − ξ
dξ = 1, (42)

∫ 1

−1
Tm(ξ)U ′

n−1(ξ) dξ = En+m

(
2n − m

k=|n+m|/2∑
k=1+(|n−m|/2)

2

2k − 1

)
, (43)

1

π

∫ 1

−1

Tn(ξ)Tm(ξ)√
1 − ξ2

dξ = 1
2 (δnm + Qnm) , (44)

1

π

∫ 1

−1
Tm+1(ξ)Un(ξ)

√
1 − ξ2 dξ = 1

4

(
δn,m+1 − δn+1,m

)
, (45)

∫ 1

−1
Tn(ξ)Tm(ξ) dξ = −2En+m

[
n2 + m2 − 1

[(n + m)2 − 1][(n − m)2 − 1]

]
, (46)

1

π

∫ 1

−1

Tn(ξ)√
1 − ξ2

dξ = δn0, (47)

1

π

∫ 1

−1

ξTn(ξ)√
1 − ξ2

dξ = δn1

2
, (48)

T ′
n(x) = nUn−1(x). (49)


