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Abstract, In a companion paper (Wilmott and Fitt (1992)) a model was proposed for the separated high Reynolds
number flow past a three-dimensional slender axisymmetric body This ‘composite’ model assumes that downstream
of the body there is both a region of constant pressure and a Prandtl - Batchelor region Matched asymptotic
expansions were employed to recover a non-linear integro-differential equation for the shape of the separated
region and some asymptotic solutions were obtained The present study concerns the numerical solution of this
equation and more detailed results concerning the cavity shape and closure properties

1. Intreduction

In Wilmott and Fitt (1992) a ‘composite’ model was proposed for the high Reynolds number
flow past an axisymmetric three-dimensional body This model may be thought of as a
combination of the classical constant pressure Helmholtz-Kirchhoff model and the constant
vorticity Prandtl-Batchelor model (see, e.g Childress, 1966). In spite of the simplicity and
elegance of these models, it has long been known that, if either model is used alone to try to
describe separated flows, each suffers from the drawback that they display poor agreement
with experiment. For two-dimensional flow, much better agreement with experiment was
obtained by the composite model of O’Malley et al (1991) where the separated region was
assumed to consist of a constant-pressure region followed by a region of (unknown) constant
vorticity. In the two-dimensional case, the entire problem may be reduced to a single
nonlinear singular integro-differential equation (NLSIDE) with a Cauchy kernel that must
be solved in order to determine the shape of the dividing streamline Although the solution
of such equations is far from a trivial matter, effective numerical procedures have been
developed (see also Fitt et al., 1985) that allow the problem to be solved with accuracy and
economy. The current study focuses on the axisymmetric case, where the numerical solution
of the relevant NLSIDEs presents a much more formidable challenge In the next section
some of the difficulties involved are discussed and the (very few) previous attempts to solve
similar problems are reviewed

A schematic diagram of the flow appears in Fig. 1. The slender axisymmetric body is
assumed to have a radius H, and the cavity reattaches smoothly to an afterbody of radius H,.
The region R,, (length L) is one of constant pressure, whilst the region R, (length

*See also Journal of Engineering Mathematics 26 539-355, 1992
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Fig. 1 Definition sketch showing the separating stream surface, stagnant zone R, , Prandti-Batchelor region R,,
and equivalent afterbody

{e« —1)L) is a Hill’s vortex (see Hill, 1894). This is the axisymmetric analogy of a
Prandtl-Batchelor region of constant vorticity in two-dimensional flow, and, according to a
classical result of Batchelor (1955) the vorticity therein is proportional to the radial distance
r.

In Section 2 below the flow model is summarized and possible numerical approaches are
discussed. The numerical method that was used in this study is explained in Section 3, whilst
Section 4 contains numerical results of both test cases and real computations, Some
conclusions concerning the model and the numerical solution of such equations are drawn in
Section 5.

2. The composite axisymmetric cavity equation

In Wilmott and Fitt (1992) matched asymptotic expansions were employed to determine the
equation satisfied by the cavity boundary. The small parameter in the problem was given by
€, which was itself defined by

2_Pe"Pe
ipU
Here p,. denotes the pressure far away from the axisymmetric body, p, is the pressure in the
cavity R,,, whilst p and U, are respectively the free stream density and velocity; € is small
because the body is slender Denoting the cavity boundary by r* = R*(x*), where the star
indicates that lengths have been non-dimensionalized with €, it was shown that R* satisfies
the NLSIDE

e =

1 1/2 (O=x=1)
= -3 R*’ = (R*R*) log R* + h*

1
+B*R* /32 (1=x=a) )
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Here derivatives are denoted by a prime, A* is the scaled jump in the Bernoulli constant
across the dividing separating streamline and 8* is the scaled vorticity in region R,,. The
interested reader is referred to Wilmott and Fitt (1992) for the details of (1) and the scalings.
(Note that Wilmott and Fitt (1992) contains some minor typographical errors.)

For both analytical and numerical purposes (1) is somewhat inconvenient, and it proves
significantly simpler to work in terms of the cavity area rather than the radius. Setting

T(x) = mR**(x)

and dropping the stars for convenience, the equation becomes

[T (®)[log(e/2) —logyx(a —x)]— 5 wdg]

€|
T7(x) T'(x) (T) ™ (0=x=1)
o = oo = | =
i) T2 0T T ah 4 A6 (1=x=a) )
Continuity of pressure at x = 1 requires that
22
T
h=1 BT (2 ) ,
16

and the boundary conditions are

mH? wH?
T(0) = Li T(@) =53

and (assuming smooth separation and reattachment)
T0)=T{a)=0.

As far as numerical calculations are concerned, it transpires that for practical purposes it is
best to perform some preliminary simplification on (2). Splitting the integral term into two
portions, integrating by parts and differentiating, we find that the equation may be written

2[ T¢) - T"x) I'(x) 10[ e T(x) ]

|€ — x| BT 2 dx(ee — x)
N T(x) _{w (0=x=1)
AT(x) ~ o - BT () -T*®)]/167 (l=x<a)
with
wH? wH;
T(0) = TR T(a) = 22 T'(0)=T"(a)=0. (3)

The equation may also be expressed in other forms, but we proceed henceforth using (3).

In Wilmott and Fitt (1992) there was a discussion of the relationship between the
boundary conditions and the requirement of cusped closure. Provided that both H, and H,
exceed zero, cusped closure, and hence finiteness of pressuze, is ensured by 77(0) = T'(a) =
0. An asymptotic analysis given in Wilmott and Fitt (1992) showed that under these
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conditions, it follows that T"(0) = T"{(@) = 0. A result of the discussion contained therein is
that, in the case when H, =0 and therefore T{«)=0 it would be possible to improve the
model by employing a more sophisticated slender body theory

2.1. Consistency conditions for the equation and discussion

Before discussing possible numerical strategies for the solution of (3), we note the important
result that not all of the parameters in (3) are independent. This fact has been noted before
for two-dimensional models by Childress (1966), who derived relationships by what
amounted essentially to a global force balance, and by O’Malley et al {1991} using a simpler
argument A similar analysis is applicable in the present case Multiplying equation (3)
through by 7'(x) and integrating from 0 to a with respect to x allows the whole of the
right-hand side and much of the left-hand side of the equation to be integrated immediately,
giving
@ * T"(x
%L [T"(x) T'(x) log(x(e — x)) + 1’"’()5)([0 (ig)—xl()

Bz@wnﬂ) T@n H?U)

) | s =m(T(@) - T(0)

An integration by parts shows that the left-hand side is identically zero, so that

167 *(T(e) — T(0))

(1) T(a) — L. T’ (a) 2T;(1) ‘

B*= (4)

This result effectively relates the vortex strength to the height of the obstacle and the length
of the constant pressure region; numerically it is an important result as it allows 8 to be
removed from the problem.

As in the two-dimensional case, it is also possible to derive a second consistency condition.
First, we note that the integral term in equation (3) vanishes identicaily when integrated with
respect to x from 0 to . This gives

fn Tgx) [ log T(x) + 1og(mz—x)) dx] = — f% [T(1) - T*)] dx. 2

As in the two-dimensional case, (5) will prove to be an invaluable check on any numerical
results produced

2.2, Numerical schemes for solving the integral equation

Before describing a method for the numerical solution of (3), we consider briefly the
previous work that has taken place, and point out some of the particular difficulties posed by
(3). First, we note that methods in the spirit of those that have proved so successful in
two-dimensional cases (see, e.g. O’Malley et al., 1991) are not possible here. In two-
dimensional models the kernels that typically arise are of Cauchy type, and may therefore be
inverted using standard techniques. Subsequent integrations may then be performed to
remove all derivatives and singular integrations from the problem, making the equations
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much easier to deal with numerically, In the present case this not possible, as there are no
simple inversion formulae for the modulus kernel in (3). We also note that (3) contains
second derivatives within the integral term. Any low-order form of approximation (for
example, one that employs piecewise constant, linear or quadratic basis functions) is thus
doomed to failure as the integral term will inevitably vanish.

Although there is very little literature concerning the numerical solution of integral
equations such as (3), problems with certain similarities to (3) have been considered before.
Bliss (1982} analyses the flow through a single slot of finite length L, typical width a and
planform #(x) in a wall separating a uniform free stream and a quiescent fluid at a different
static pressure. The motivation of his study was the need to understand the aerodynamic
behavior of slots in transonic wind tunnel walls. Under the assumption that the displacement
of the free surface is small compared to the slot width, it may be shown that, for subsonic
flows when the Mach number M is less than unity, the free surface displacement S(x) satisfies
the equation

2

S '(x)(log[az(l—_Mz—)] + log[4x(1 — x)] + 1?%56')

In contrast to our model, the free surface is never required to reattach and the pressure in
the slot is uniform — there is no recirculating region.

In spite of the many similarities between {6) and (3), the numerical solution of (6) is much
simpler as the unknown function S{r) occurs only in differentiated form, and moreover
appears in a linear fashion. The problem may therefore be solved in straightforward manner
by using piecewise constant approximations for the derivatives of § It was found using this
method that accurate solutions could be produced in an economical way, and the scheme
could also be used to study the similar case of supersonic flow. Similar remarks also apply to
the equations for the stretching of a slender, axisymmetric viscous inclusion that were
studied by Fitt and Wilmott (1989), though in this case the flow was unsteady and it was
necessary to solve an additional evolution equation

There appears to be very little literature other than that mentioned above concerning
equations that possess similarities to (3) Accordingly we proceed below in an ad hoc
fashion

3. A numerical method for solving the integral equation

We now propose a method for the numerical solution of the governing integro — differential
equation (3). As discussed above, there seems to be little literature concerning numerical
methods for nonlinear integro — differential equations with modulus kernels, and it seems
most unlikely we will be able to supply numerical convergence proofs for (3), thus an ad hoc
method will be proposed.

The interval {0, «] is discretized into N equal intervals of length s where AN = «, the
intervals being bounded by the points x, =0, x,, = @ The method may easily be modified to
include the case of unequal mesh spacing (so that, for example, mesh points could be
clustered near x = 0 and x = &) but some preliminary experiments showed that this was not
necessary. The values of 7(x) at the end points of the interval being known, collocation is
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used to determine 7(x) at the N — 1 interior points of the interval. Because of the second
derivatives that appear in the integral term of (3), T(x) is approximated using cubic splines.
Writing 7(x,) = T,, we approximate T(x) in the interval [x;, x,,,] by
1
T(x) = T (x) ~6h (M (1 — X+ My (x 7xk)3 + gy —X)(6T, — R*M,)
+(x —x )6 sy — BM,.)]

so that

Ti0) = g By (6 = 5~ My~ 5,1 = 6Ty = Toer)+ WM, = My )]
Ti) =5 (=Ml 1)+ Moy (6= 3]

The spline coefficients M, (k=0,1,. ., N) are chosen in the normal way to ensure that the
approximation to T(x) has continuous first and second derivatives, and additionally to ensure
that two out of the four conditions T'(0) = T'(e) = T"(0) = T"(e) =0 are satistied The
spline equations are therefore given by

{2M0 +M, =6(T,— TR (T'(0)=0)
M, =0 (T"(0)=0)

6
Moy +4My + My =5 (T = 20+ T *k=1,2,. ,N—-1) (7

{Mw-l +2My = 6(Ty_ — T)/R* (') =0)
My =0 (T"(ex) = 0)

The remaining N — 1 equations are given by collocation, and an additional advantage of
the spline representation is that the integral term may now be evaluated analytically. After

some work we find that, evaluated at the collocation point x;, the integral term in (3) is given
by

1N‘l
"2 AN
where
- ]7 —
My~ M)+ 0, 0g(I=7) (<)
LMo, (j=k)
ik Mk_Mk+1 (j:k+1)
ik )
|01 M)+ Quion( 7 55) GRrD)
and

ij =(k—j+ M, — k=M., —M,;.

i
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Discretizing the remaining terms in (3) at x =x; in the obvious manner, we find that the
N — 1 collocation equations that close the system are
N—-1
BN
2

k=

€T, ] o (T~ T) — WM, +2M))°

MJ.1 [
+_
2 08 dar(e — x;)x; 144h2T,—

T (Oixjf—_l)
{w—BZ(Tz(l)—Tz(xj))/’l&r (Isx,<a) (

ji=1, ..,N-1) (8)

where, from the consistency condition discussed above, 8 is given by (4)

Clearly there are many possible ways to proceed; one possibility is to guess an initial
profile for T(x), generate the spline coefficients by solving the linear equations {7), and then
solve (8) to produce new values for the T,, proceeding thereafter by iteration until a
complete solution is determined. Numerical experiments show however that this tends to be
an ill-conditioned procedure and extremely severe relaxation has to be employed in order to
obtain a solution even for a low number of computational points. Another attractive
possibility is to treat the equations (8) as linear equations for the spline coefficients, and
consider (7) as equations for the T, Unfortunately however this stratagem suffers from
similar defects. After much experimentation, it has emerged that a superior method is to
solve all of the equations simultaneously, ignoring the fact that some are in fact linear and
treating the whole system as a set of non-linear equations.

Treating the 2N equations (7) and (8) as a system of non-linear equations, the Powell
(1970) hybrid method was used to determine a solution This method is esseatially an
extension of the well-known Levenburg-Marquardt scheme in which, to solve f(x)=0,
successive updates x) of the solution are calculated according to a rule of the type

L0 = (JT(xj)J(xj-) + /\jI)_l-IT(xj)f(xf)

where J is the Jacobian and the A, are to be chosen. Space does not permit a fuller
explanation of the method, but it combines some of the best features of both Newton’s
method and the method of steepest descents, whilst using approximate values for the
Jacobian in order to preserve economy The method is easily available in the form of the
NAG library routine COSNBF.

4. Numerical results and discussion

The method described above was coded in FORTRAN 77 using DOUBLE PRECISION,
running o a SUN SPARC-2. In all the cases described below, the method converged
quickly., The method as described above also provides for some additional checks to
determine whether or not the current value of e is the correct one; firstly the two (either first
or second) derivative conditions that have not been imposed may be examined, and secondly
we may examine the consistency condition (5) to see whether it is satisfied. In the cases
described below, library routines were used to calculate the integrals appearing in (5).

4.1, A numerical test case

In order to test the numerical method, calculations were first carried out using a test case,
Although realistic test cases are hard to construct, by ignoring the right-hand side of (3) it is
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possible to test the numerical scheme on a problem that shares almost all of the
characteristics of the original one. It may easily be checked that, if the right-hand side is
replaced by

9x'q*(B + 4x° — Sxa)’ _ 5q(-44x* + 66ax” — 24xa” + o)
015(1’1(0)1:»:5 + T(a)x3,8 - x3,8 7(0)) a’

i, <0 55

o 4'17.75(0! - x)

where
g=T@)—T), B=10a’—15ax + 6x°
then the solution to the problem is given (for arbitrary & > 1) by

g<'B

5
o

T(x)=T(0) + :
For this solution both the first and second derivatives are zero at both ends of the range. The
problem was solved using the method described above, for a variety of conditions and for
different numbers of mesh points Typical results are given in the tables below; in Table 1
zero first derivatives were forced at each end, whilst in the second set of results (Table 2) the
second derivatives were set to zero at the ends of the range In both cases the parameter
values € =1/100, & =5, T(0) =5 and T{(xr) =1 were used.

A number of conclusions may be drawn from the test cases; in all cases the resulis are
clearly very satisfactory, with accurate values being produced for the variable T(x) even with
only a very few collocation points The results also show that, as might be expected, in
general, it is better to prescribe the second derivatives to be zero at the ends of the interyal.
Some further experiments were carried out with a larger number of mesh points; as is
commonly observed in spline and interpolation methods, it was found that when the number
of knots is very large there was no significant improvement in the results, Accordingly it was

Table 1. Results for test case with derivatives zero at cavity ends

x N=3 N=10 N=20 N=50 N=100 EXACT
00 5000 5000 5000 3 000 5000 5000
03 4962 4 965 4 966 4 966 4 966
10 4745 4.763 4768 4768 4768 4 768
13 4.344 4347 4.348 4.348 4.348
20 3719 3729 3730 3730 3730 3730
25 3002 3 003 3000 3 000 3000
30 2 290 2275 221 2270 2270 2270
35 1 659 1653 1652 1652 1652
40 1259 1239 1233 1232 1232 1232
45 1039 1033 1034 1034 1034
50 1000 1000 1000 1 000 1 000 1060
(0) —28l6E—-1 —9852E—-2 —-2805E—-2 3701E -3 82B4E—4 0 000

T"(w) 2.973E -1 1.152E -1 4273E-2 8.959E —3 ITHE -4 0.000
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Table 2. Results for test case with second derivatives zero at cavity ends

x N=5 N=10 N=20 N=150 N=100 EXACT
00 5 000 5000 5000 5000 5 000 5.000
05 4 961 4 963 4966 4 966 4 966
10 4731 4763 4 768 4768 4768 4 768
15 4 344 4,347 4348 4348 4 348
2.0 3717 3729 3730 3730 3730 3730
25 3002 3000 3000 3000 3000
30 2 295 2274 2271 2270 27270 2.270
35 1659 1 654 1652 1652 1652
40 1277 1239 1233 1232 1232 1232
45 1 040 1035 1034 1034 1034
50 1 000 1 000 1000 1000 1 000 1000
T'(0) 0 000 0000 0.000 0000 0 000 0 000
T'(a) —1.124E-1 —2.095E -2 -3.510E—3 —2.220E — 4 —4370E—-6 0.000

decided to use a maximum of 100 knots in the calculations reported below All of these
conclusions were also confirmed by many other test cases that were run but are now shown
here for the sake of brevity.

In spite of this encouraging agreement, it is important to realise that it would be
unreasonable to expect this level of accuracy when (3) is solved numerically. For the test
case, the right-hand side of the equation is not only chosen in what must be regarded as a
very special way, but also there is no consistency condition, and in the full problem it is this
that guarantees that both 7"(0) and T"(«) are zero. Additionally, the asymptotic analysis of
Wilmott and Fitt (1992) shows that the details of the local solution are very subtle, and
moreover in the limiting case loge— —w it is impossible to satisfy the correct second
derivative boundary conditions at the ends of the range. Finally, and perhaps most
importantly, a solution exists to the test problem for any value of a. This contrasts with the
full problem, where, once the cavity heights at each end and the small parameter € have
been specified, the quantity o is uniquely determined.

4.2. Numerical results for the full problem

In this section, some numerical results for the full problem (3) are discussed Guided by the
test cases and a large number of numerical experiments, all results given below were
computed using the version of the scheme where the second derivatives were prescribed to
be zero at the end points of the interval.

As discussed above, the quantity & must be determined for each set of data; this involves
an iterative process. For a succession of values of «, the slopes at either end of the cavity
were examined, as was the accuracy of the consistency condition (5). Typically, for example
when the approximate value of o was taken to be smaller than the correct value, the
following behaviour was observed. As a was increased, it was found that the slopes at the
cavity ends and the difference between the right- and left-hand sides of (5) simultaneously
tended to zero, as expected.

Figures 2(a) and 2(b) show numerical results for a typical case, specifically when the values
e =1/100, 7(0) =6 and T(e) =1 are used. For the results shown 100 mesh points were used
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AFTERBODY

Fig 2(a) Calculated cavity shape for T(0) =6, T{e) =1 € = 1/100 (afterbody shown dotted) (b) Calculated scaled
pressure cocfficient C, = (p - p)(LpUle) for T(0) =6, T(a)=1 e=1/100

and o was determined to have a value of 6.50. Figure 2(a) shows the cavity shape whilst Fig.
2(b) shows the pressure coefficient

_ PP
G =30

Some studies were also carried out to examine the dependence of the results on the number
of mesh points used Employing 10,20, 40 and 70 mesh points the computed values for «
were 7 44, 7.04, 6.72 and 6.56, respectively, whilst for 200 mesh points the results were
virtually indistinguishable from the case shown Such behaviour is typical of all the cases
further considered below,

The method described above relies crucially on the fact that it is possible to determine e
for each case by examining the derivatives of T(x) at each end of the cavity. Figure 3 shows

T*(0}

L T'a)

Fig 3 Cavity slopes at x =0 (solid line) and x =« (dotted) for various values of «
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Fig. 4. Calculated cavity shapes for 7(0) =3, e =0 001 and afterbody heights 2,1,0 5 and 0 1 (afterbodies shown
dotted)

calculated values of 7'(0) (solid line) and T'(e) (dotted line) plotted against « It will be
observed that both derivatives are simultaneousiy zero when o = 6.50. For this value of & the
consistency condition (5) is also satisfied to a good degree of approximation

Figure 4 shows the effect of decreasing the height of the afterbody. As discussed above,
we cannot expect to generate solutions with zero curvature when the afterbody height is
zero, but for any positive afterbody height the numerical scheme proceeds in an identical
fashion to the cases described above For the calculations shown, 100 mesh points were used
and the values € =0.001, T(0)=3 and T(«)=2,1,1/2 and 1/10 were used, the corre-
sponding calculated values of & being given respectively by 2.45, 4 10, 5 60 and 6.45. Further
numerical experiments have shown that, as might be expected, when the height of the
afterbody approaches zero it becomes increasingly difficult to compute solutions that possess
zero derivative at the right-hand end of the cavity.

4 3 Numerical solutions for the case loge— —w

Although for arbitrary values of € the complexity of (3) precludes closed-form solutions, for
very small values of € solutions may be determined for the purposes of comparison. Natvely
letting € — 0 in (3) simply results in the statement that the second derivative of T is zero.
Using the numerical method described above it may easily be confirmed that if smaller and
smaller values of ¢ are used, then the computed solution rapidly approaches the function
T(x) = T(0) + x{T() — F(0))/ex. In this limiting case e is arbitrary and both sides of the
consistency condition (5) degenerate to zero. This degenerate exact solution is well
reproduced whatever combination of first and second derivatives are prescribed at the ends
of the cavity; if the contradictory conditions T/(0) =0 or T'(«) = 0 are used then the second
derivative of the computed sohution merely jumps at the ends of the cavity.

A far more interesting limit occurs when limit e — 0 is examined and the natural scalings
are carried out as in Section 4 of Wilmott and Fitt (1992) Setting 7(x) = U(x)/(—log €) and
B = —v loge we have, in the limit e—0,

*]

X
Ux)=D, 5

and for 1=x=sgq

U(x)
I N oy
—PES+QE+R
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gymbols : computed

----- -

-(1leg €)T(x)

Fig 5 Comparison between computed points (symbol) and exact solution (solid line) for the case e—0

where D, = U(0), D, = U(a) and

P:;;m, Q=—2qr+'yg%, R=2WU(a)—L(U(1)U() ())

For a given D, and D, continuity of U and its first derivative at x =1 then further require

Dy —wiZ d
a1~ g ©)
D,  \-PeP+QE+R

and

: 2
D,-D, = ﬁ (Dz(Dl — 2y - % D}-% (D, - 17/2)3)
so that @ may be determined.

Figure 5 shows a comparison between the exact solution described above and numerical
calculations carried out with 100 points using the values D, =5,D,=1 and € = 10" ' For
this case it is found from (9) that « =2.0488 In contrast to the cases discussed above, the
first derivatives of T were prescribed to be zero at the cavity ends; in this limiting case the

(non-zero) second derivatives are given by

2

UO)=—m, U'e)=—m -+ (D, ~ 72~ D3) (10)

A value for & was therefore determined by minimising the difference between (10) and the
computed values of the second derivatives at the cavity ends. The result a calculated value of
o =2.03. In Fig, 5 the exact solution is shown using a solid line whilst the computed points
are depoted by symbols. The agreement is clearly extremely satisfactory, and provides
further evidence of the success of the numerical method.

5. Conclusions

A numerical method has been developed for the solution of a nonlinear singular integro-
differential equation. The method relies on the approximation of the unknown function
using cubic splines, and collocation at the interior points of the computational region.
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Although the inherent non-linearity of the problem means that numerical convergence
proofs are not available, by considering test cases and properties of the computed solution
for general cases, it is possible to have a large amount of confidence that the scheme is,
indeed, computing the correct solution to the equation The results have implications for
models of flow past slender axisymmetric bodies; in particular the length of the cavity for
such flows may be computed.
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